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Model

I For t = 1 . . .T : observe input xt and take action yt

I µ(xt , yt) ∈ [0, 1] is the chance of no catastrophe at time t

I Maximize
∏T

t=1 µ(xt , yt)

Asking for help:

I Mentor with policy πm

I Query → observe πm(xt)

I Local generalization: if mentor said y is safe for x , then y is
probably also safe for similar x ′

I Agent should perform nearly as well as mentor:

RT = E

[
log

T∏
t=1

µ(xt , π
m(xt))− log

T∏
t=1

µ(xt , yt)

]
→ 0
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Theorem (Plaut, Zhu, Russell)

Assume that πm satisfies local generalization and either

1. The mentor policy class has finite Littlestone dimension, or

2. The mentor policy class has finite VC dimension and the
adversary is smooth.

Then there exists an algorithm whose rate of querying the mentor
and whose regret both go to 0.

}
exactly what makes standard online learning tractable!

I Algorithm asks for help for unfamiliar inputs, otherwise follows a
normal online learning algorithm

Policy class is
learnable without
catastrophic risk

+ mentor +

can transfer
knowledge
between

similar inputs

=⇒
Policy class is
learnable with

catastrophic risk
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Conclusion

1. Nearly all of learning theory assumes any error can be
recovered from =⇒ can explore through trial-and-error

2. Our algorithm explores cautiously by asking for help in
unfamiliar situations

3. Under the same assumptions that enable standard online
learning, our algorithm:

I avoids catastrophe with high probability
I gradually becomes self-sufficient

Future work:

I Not only avoid catastrophe but also maximize reward

I No mentor

I Applications in RL, LLMs
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