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1-Dimensional Visualization

Deep learning algorithms 
perform reasonably well at 

type 1 transfer

The function encoder has 
guaranteed type 2 transfer 

due to linearity The function encoder gives 
the best approximation in 

the span of the basis

In contrast, learning-based 
methods always output functions 
similar to their training set 

Learning-based 
methods do not

Inductive Transfer Learning

Leverage a diverse dataset of source tasks to
improve performance on downstream target tasks.

A Geometric Characterization

Training Functions: Each source task is a function in

Type 3: Extrapolation 
to the rest of 

Type 1: Interpolation 
within the convex hull 

Type 2: 
Extrapolation to 
the linear span

Empirical Results

Negative Examples

Positive Examples

Query

Few-Shot Image Classification
Identify new classes from examples

Pose Estimation
Predict the location of the camera

Position = ???Position = (1,1,1) Position = (2,0.5,0.5)

Example Dataset Query

Train Set Type 3 Transfer

Dynamics Modeling
Model dynamics with varying morphology

Achieves better performance than 
ad-hoc algorithms

Greatly outperforms on unseen rooms

Stable performance on eval data

For More Information...

Paper Python Package

Our Approach

Learn a minimal set {g1, ..., gk} of neural network
basis functions to span the training data.
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Takeaway: Neural network basis functions yield
efficient and powerful transfer learning.

Relation to Prior Work


