
BackSlash: Rate Constrained Optimized Training of 

Large Language Models

Jun Wu, JiangtaoWen*,Yuxing Han*

New York University (project lead), Tsinghua University

2025.06



1. Background



Background

➢ Challenges in the Development of Large Language Models

Large Language Models (LLMs) have been widely adopted due to their powerful learning and generalization capabilities. Their 

parameter scale has experienced rapid growth in recent years, which poses significant challenges for storage, distribution, and 

inference.

➢ Limitations of Model Compression

To reduce the computational and storage costs of Large Language Models (LLMs), various model compression techniques — such 

as quantization, pruning, distillation, and low-rank decomposition — have been proposed in recent years. However, most of these 

methods follow a "train-first-then-compress" paradigm, separating the training process from the compression process. In contrast, 

parameter compression during training has received relatively little attention.

Table 1. Parameter scale and growth rate of GPTs as an example over recent years.



2. Methodology



Generalized Gaussion Prior

➢ Gaussion Distribution Model

Most research has assumed that model parameters follow a Gaussian distribution during the initialization phase. He initialization 

and Xavier initialization were proposed based on this assumption. However, relatively little attention has been given to how 

parameter distributions evolve during the training process.

➢ Generalized Gaussion Distribution Model

Through extensive experiments, we have found that model parameters actually conform more closely to a Generalized Gaussian 

Distribution (GGD) . Notably, the shape parameter ν in many models is often less than 2. For example, the shape parameters are 

approximately 1.36 for BERT, 1.54 for GPT, 1.26 for LLaMA, and 0.85 for DeepSeek.

Figure 1. Parameter distributions fitting by generalized Gaussian distribution (GGD) and Gaussian distribution 

(GD) under different LLMs. GGD fits the boundaries of the parameter distributions better than GD does.



BackSlash Framework

➢ Discrete Generalized Gaussian Rate (DGGR)

As mentioned on the previous page, the probability of parameter 𝜃𝑖 can be estimated as:

Then calculate the entropy based on the information quantity of the parameters:

𝛿, 𝐶1, 𝐶2, 𝜈 are all constants. By ignoring the constant bias and combining the constant coefficient, the entropy regularization can be 

simplified into the formula below:

➢ Loss Funtion of BackSlash

The proposed objective function is formulated as:

✓ 𝐷(⋅) represents the task-specific loss (e.g., cross-entropy for classification), 

✓ 𝑅(·) denotes the parameter information rate measured via average information content (e.g. DGGR as derived below),

✓ 𝜆 serves as a Lagrange multiplier controlling the intensity of rate constraint.



Exponential-Golomb (EG) Code

➢ Weaknesses of Huffman Code
✓ Huffman tables designed for different LLMs are different, while a practical implementation may often need to accommodate 

multiple models in the same system (e.g. on the same chip).

✓ Huffman table designed based on empirical distributions usually is not well-structured, leading to more complicated encoder / 

decoder implementation.

✓ We observe the Huffman code can only provide minimal efficiency gains over EG code on BackSlash-trained.

➢ Advantages of EG Code
✓ The performance of EG codes is robust with regard to parameter mismatch, and as a result, adaptive coding is not needed when 

parameters of the quantized GG source change.

✓ EG codes contain an infinite number of codewords, and can therefore be used for LLM of any size.

✓ EG codes are nicely structured, and allow for highly optimized encoder/decoder.

Table 2. The Structure of exp-Golomb code with different parameter 𝑘 which is from 0 to 5 as an example. 

In general, EG codes with a smaller parameter k encode better for GG sources with low shape parameters.



3. Experiment



Generalization Analysis

➢ Model Architecture

➢ Learning Tasks

In the top-right figure, we applied BackSlash for text 

classification tasks on various well-known models. As can 

be seen, BackSlash achieves excellent compression 

performance across different entropy coding schemes in all 

types of tasks. Specifically, Gemma achieved compression 

rates of 89% and 90% under EG coding and Huffman 

coding, respectively.

In the bottom-right figure, we conducted classification 

tasks on BERT and text generation tasks on DeepSeek-7B. 

As can be seen, BackSlash is task-agnostic; it achieves 

good compression performance regardless of whether the 

task is classification or generation, without affecting the 

model's predictive performance.

Table 3. Compression performance of BackSlash with different model architectures 

and parameter scales.

Table 4. Compression performance of BackSlash under different deep learning tasks.



Quantization and Pruning

➢ Quantization

➢ Pruning

In the top-right figure, we quantized both the BackSlash model and the 

conventionally trained model using different quantization step sizes. As can 

be seen, quantization does not introduce additional negative effects on the 

BackSlash model. This is because quantization equally degrades the precision 

of parameters, so the curves for both the BackSlash model and the 

conventionally trained model exhibit nearly overlapping trends.

In the bottom-right figure, we pruned both the BackSlash model and the 

conventionally trained model using different pruning rates. As can be seen, 

the pruning performance of the BackSlash model is better. The conventionally 

trained model begins to experience a decline in accuracy when the pruning 

rate reaches 50%, while the BackSlash model maintains its original predictive 

capability even at an 80% pruning rate. This indicates that BackSlash works 

well in conjunction with pruning.

Figure 2. Quantization using different quantization 

steps for BackSlash model and normal training model.

Figure 3. Pruning using different pruning rates for 

BackSlash model and normal training model.



4. Conclusion



Conclusion

➢ Summary

➢ Impact

✓ Generalized Gaussian Prior: Through extensive analysis of parameter distributions in current large language models, we 

observed that they are better described by the family of generalized Gaussian distributions.

✓ Training-Compression Integration: BackSlash merges model optimization and compression techniques during training to 

produce compact, high-performance models ready for deployment.

✓ Efficient and Hardware-Friendly: BackSlash produces smaller models that are more efficient to compute and transmit, and 

better compatible with hardware deployment via pruning.

Instead of using standard backpropagation to train a large model and compressing it afterward, our BackSlash framework integrates 

efficiency directly into the training process to produce small and easy-to-deploy models. This framework can significantly influence 

how the next-generation foundation models are trained and deployed, both in software and hardware.



Thank you for Listening!

Jun Wu, JiangtaoWen*,Yuxing Han*

New York University (lead), Tsinghua University

2025.06


