Do NOT Think That Much for 2+3=? On the Overthinking of Long Reasoning Models

Xingyu Chen^{1,2}, Jiahao Xu², Tian Liang², Zhiwei He^{1,2}, Jianhui Pang, Dian Yu², Linfeng Song², Qiuzhi Liu², Mengfei Zhou¹, Zhuosheng Zhang¹, Rui Wang¹, Zhaopeng Tu², Haitao Mi², Dong Yu²

¹Shanghai Jiao Tong University ² Tencent

OVERVIEW

- Long Reasoning Models, such as OpenAl o1 and DeepSeek-R1, have attracted much attention for their ability to demonstrate human-like deep thinking.
- However, the reasoning process might be inefficient.
- We presents the first comprehensive study on the prevalent issue of **overthinking** in these models.
- **Overthinking**: The long reasoning model generates *redundant, homogeneous solutions* to a single question, and the subsequent solutions contribute less to the accuracy and diversity.

EXAMPLE

Question: What's the answer of 2+3?

QwQ-32B-Preview (901 tokens)

QwQ-32B-Preview generates 13 solutions!

FINDINGS

Finding 1: Redundant solutions contribute less to the accuracy

- ► More than 85% of the time the first answer is already correct.
- ► Subsequent solutions mainly verify previous solutions.

(Figure: The distribution of First Correct Solution)

Finding 2: Redundant solutions lack diversity

- ► The second solution has only a 50% chance of introducing a new reasoning strategy.
- ► As the number of solutions increases, the possibility decreases.

(Figure: The probability that the solution of each position introduces a new reasoning strategy)

Finding 3: Overthinking is more severe in simple questions

- ► Solution Density: the number of solutions per 1000 tokens
- ► Overthinking is more prominent in simple questions

(Figure: The Solution Density in different difficult level of problems (MATH500))

METRICS

► Outcome Efficiency: The ratio of the tokens in first correct solution to the total tokens

$$\xi_O = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \frac{\hat{T}_i}{T_i}$$

- σ_i : The correctness of the *i*-th response.
- \widehat{T}_i : The tokens in the first correct solutions
- T_i : The tokens in the full response
- ► Process Efficiency: The ratio of the tokens in different reasoning strategy to the total tokens

$$\xi_P = \frac{1}{N} \sum_{i=1}^N \frac{D_i}{T_i}$$

- D_i : The tokens in the different reasoning strategies
- T_i : The tokens in the full response

METHODS

Length Preference Optimization

- ► Step 1: Sampling on training set
- ► Step 2: Streamline sampling results
- ► Step 3: Construct Preference Pair
- ► Positive Example: Keep the *first correct solution* and another round of *verification (reflection)*
- ► Negative Example: The longest response in sampling results

EXPERIMENT RESULTS

Methods	Accuracy	Response		Efficiency	
		#Solution	#Token	Outcome	Process
	AS	SDIV			
QwQ-32B-Preview	96.5	3.5	713.7	53.7%	69.0%
+SimPO _{FCS+Reflection}	96.6	1.9	381.5	82.5%	87.9%
	GS	M8K			
QwQ-32B-Preview	94.7	2.9	756.1	11.8%	75.2%
+SimPO _{FCS+Reflection}	95.9	1.8	416.5	86.0%	91.0%
	MA	TH500			
QwQ-32B-Preview	91.2	4.3	2398.5	51.4%	70.3%
+SFT _{Shortest Response}	92.6	4.4	2359.0	59.7%	72.8%
+DPO _{Shortest Response}	93.2	3.4	1928.8	64.3%	77.8%
+RPO _{Shortest Response}	90.2	3.5	2015.2	64.7%	76.6%
+SimPO _{Shortest Response}	91.0	3.5	1871.5	64.7%	78.1%
+SimPO _{First-Correct Solution}	90.4	1.3	1015.6	85.5%	96.3%
+SimPO _{FCS+Reflection} (Ours)	91.4	2.4	1330.3	79.1%	88.9%
+SimPO _{Greedily Diverse Solutions}	91.2	1.7	1285.8	80.1%	90.2%

- ► Our proposed method maintains comparable math reasoning performance.
- ► Also greatly reduces generated tokens and improves efficiency.