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Background

• The attention mechanism has quadratic complexity, and 

the KV cache grows linearly with the text length.

• The size of the KV cache being too large can affect 

inference speed and consume a significant amount of 

GPU memory, especially for long-text tasks.

• Most existing training-free methods are query-dependent: 

filtering the most relevant KV based on the current query.

• The existing sparse attention baseline methods are 

overly sparse. (e.g., StreamingLLM[ arXiv:2309.17453] )

Note:  SepLLM is suitable to serve as the fundamental baseline model for sparse attention mechanisms in LLMs.
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Observation

• An interesting pattern: certain seemingly meaningless separator 

tokens (i.e., punctuations) contribute disproportionately to attention 

scores compared to semantically meaningful tokens.

• >>> Information of the segments between these separator tokens 

can be effectively condensed into the separator tokens themselves 
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Fundamental Design
• During Training & Pre-filling: only attend to Initial Tokens, Separator Tokens, 

Local Tokens

• During Inference: decode based on the KV pairs of Initial Tokens, Separator
Tokens, Local Tokens

SepLLM closely aligns with the semantic distribution of natural language because the separator itself provides a division and summary 

of the current segment. The segments separated out are inherently semantically coherent, forming self-contained semantic units. 

Note:  During the pretraining phase, SepLLM intentionally compresses segment information into the separator used to divide the 

segment.
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Tailored Streaming Design
• To facilitate scenarios of streaming inference with infinitely long inputs 

(where separators’ KVs may accumulate indefinitely) and to simplify KV 
cache management, we propose the following design.
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Experiments

• Entire Lifecycle of LLM: optimization for training-from-scratch, 

post-training, and training-free.

• Validation on Large-Scale Data: PILE dataset (over 300B tokens)

• Adaptation to Different Inference Lengths: From <2k, to 20K, 4M.

• Adaptation to Different Backbone Architectures and Sizes: 

Pythia-160M, Pythia-1.4B, Pythia-6.9B, Pythia-12B, Llama3-8B, 

GPTNeoX-20B, and Falcon-40B, etc.

• Extensive Downstream Task Benchmarking: our evaluation 

covers 15+ challenging benchmarks across 5 capability dimensions:
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Experimental Results

• Training-Free Results

• Downstream Results of Trained SepLLM Models:

Note: You are recommended to train from scratch to achieve the optimal performance of SepLLM
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Training Process
• Post-Training

• Training-from-Scratch
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Long-Streaming Test
• Lower perplexity, less KV cache, less inference time 

based on different models, sizes, etc.
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Ablation Study
• On local size (w) and whole cache size (c)

• On initial tokens and positional encoding shifting (PE shifting).

Note: In practice, no need to 

do PE shifting if the actual 

length does not exceed the 

pretrained max PE length.
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Ablation Study
• On Choice of Separators

• Fixed-Interval Variant (FixLLM)

Note: See many other experimental results (e.g., Needle in a Haystack) in the paper
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Source Code and Usage

• You can find our code at 
https://github.com/HKUDS/SepLLM

• Or: sepllm.github.io

• You can find all the code related to training-free, 
streaming, and training-from-scratch  
experiments.

If you find our code useful, please consider giving us a star 🌟

Your support is greatly appreciated 😊
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Demo Usage
• To run this SepCache demo, you must install our `transformers` package from our repository:  

https://github.com/HKUDS/SepLLM

from transformers import AutoTokenizer, AutoModelForCausalLM, SepCache
import torch
from huggingface_hub import login
login(“xxxXXXxxx")

def to_cuda(a_dict: dict) -> dict:
  new_dict = {}  
  for k,v in a_dict.items():
    if isinstance(v, torch.Tensor):
      new_dict[k] = v.cuda()
    else:
      new_dict[k] = v
  return new_dict

model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", attn_implementation="flash_attention_2", device_map="cuda:0")
model.bfloat16().cuda()
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
inputs = tokenizer(text=["My name is Llama 3"], return_tensors="pt")
inputs = to_cuda(inputs)

past_key_values = SepCache(init_cache_size=4,sep_cache_size=128,local_size=256,cache_size=512, layer_num=32, USE_MAX_SEP_CACHE=True, model_type='llama')
outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
outputs.past_key_values # access cache filled with key/values from generation

• When using the `update` function of SepCache to update the keys/values and the past token ids 
(necessary in SepCache), the current `input_ids` must also be provided. 

key_states, value_states, query_states = past_key_values.update(        
  key_states = key_states,
  value_states = value_states,  
  input_ids = input_ids, 
  layer_idx = layer_idx,   
  PREFILLING_FLAG = q_len > 1, ## `q_len` is the sequence length of the current `query_states`
  cache_kwargs = None )
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End of Presentation

Thank you

@inproceedings{chen2025sepllm,
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 booktitle={International Conference on Machine Learning},
 year={2025}
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Discussion
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