
1

SepLLM: Accelerate Large Language Models by

Compressing One Segment into One Separator

sepllm.github.io

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo

Li, Weiyang Liu, Chao Huang

Noah’s Ark Lab, Huawei Technologies The University of Hong Kong Center of Excellence in Generative AI, KAUST Max Planck Institute for Intelligent Systems, Tübingen

An Easy-to-Use Native Sparse Attention Baseline Method

https://arxiv.org/search/cs?searchtype=author&query=Chen,+G
https://arxiv.org/search/cs?searchtype=author&query=Shi,+H
https://arxiv.org/search/cs?searchtype=author&query=Li,+J
https://arxiv.org/search/cs?searchtype=author&query=Gao,+Y
https://arxiv.org/search/cs?searchtype=author&query=Ren,+X
https://arxiv.org/search/cs?searchtype=author&query=Chen,+Y
https://arxiv.org/search/cs?searchtype=author&query=Jiang,+X
https://arxiv.org/search/cs?searchtype=author&query=Li,+Z
https://arxiv.org/search/cs?searchtype=author&query=Li,+Z
https://arxiv.org/search/cs?searchtype=author&query=Liu,+W
https://arxiv.org/search/cs?searchtype=author&query=Huang,+C

2

Background

• The attention mechanism has quadratic complexity, and

the KV cache grows linearly with the text length.

• The size of the KV cache being too large can affect

inference speed and consume a significant amount of

GPU memory, especially for long-text tasks.

• Most existing training-free methods are query-dependent:

filtering the most relevant KV based on the current query.

• The existing sparse attention baseline methods are

overly sparse. (e.g., StreamingLLM[arXiv:2309.17453])

Note: SepLLM is suitable to serve as the fundamental baseline model for sparse attention mechanisms in LLMs.

3

Observation

• An interesting pattern: certain seemingly meaningless separator

tokens (i.e., punctuations) contribute disproportionately to attention

scores compared to semantically meaningful tokens.

• >>> Information of the segments between these separator tokens

can be effectively condensed into the separator tokens themselves

4

Fundamental Design
• During Training & Pre-filling: only attend to Initial Tokens, Separator Tokens,

Local Tokens

• During Inference: decode based on the KV pairs of Initial Tokens, Separator
Tokens, Local Tokens

SepLLM closely aligns with the semantic distribution of natural language because the separator itself provides a division and summary

of the current segment. The segments separated out are inherently semantically coherent, forming self-contained semantic units.

Note: During the pretraining phase, SepLLM intentionally compresses segment information into the separator used to divide the

segment.

5

Tailored Streaming Design
• To facilitate scenarios of streaming inference with infinitely long inputs

(where separators’ KVs may accumulate indefinitely) and to simplify KV
cache management, we propose the following design.

6

Experiments

• Entire Lifecycle of LLM: optimization for training-from-scratch,

post-training, and training-free.

• Validation on Large-Scale Data: PILE dataset (over 300B tokens)

• Adaptation to Different Inference Lengths: From <2k, to 20K, 4M.

• Adaptation to Different Backbone Architectures and Sizes:

Pythia-160M, Pythia-1.4B, Pythia-6.9B, Pythia-12B, Llama3-8B,

GPTNeoX-20B, and Falcon-40B, etc.

• Extensive Downstream Task Benchmarking: our evaluation

covers 15+ challenging benchmarks across 5 capability dimensions:

7

Experimental Results

• Training-Free Results

• Downstream Results of Trained SepLLM Models:

Note: You are recommended to train from scratch to achieve the optimal performance of SepLLM

8

Training Process
• Post-Training

• Training-from-Scratch

9

Long-Streaming Test
• Lower perplexity, less KV cache, less inference time

based on different models, sizes, etc.

10

Ablation Study
• On local size (w) and whole cache size (c)

• On initial tokens and positional encoding shifting (PE shifting).

Note: In practice, no need to

do PE shifting if the actual

length does not exceed the

pretrained max PE length.

11

Ablation Study
• On Choice of Separators

• Fixed-Interval Variant (FixLLM)

Note: See many other experimental results (e.g., Needle in a Haystack) in the paper

12

Source Code and Usage

• You can find our code at
https://github.com/HKUDS/SepLLM

• Or: sepllm.github.io

• You can find all the code related to training-free,
streaming, and training-from-scratch
experiments.

If you find our code useful, please consider giving us a star 🌟

Your support is greatly appreciated 😊

13

Demo Usage
• To run this SepCache demo, you must install our `transformers` package from our repository:

https://github.com/HKUDS/SepLLM

from transformers import AutoTokenizer, AutoModelForCausalLM, SepCache
import torch
from huggingface_hub import login
login(“xxxXXXxxx")

def to_cuda(a_dict: dict) -> dict:
 new_dict = {}
 for k,v in a_dict.items():
 if isinstance(v, torch.Tensor):
 new_dict[k] = v.cuda()
 else:
 new_dict[k] = v
 return new_dict

model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", attn_implementation="flash_attention_2", device_map="cuda:0")
model.bfloat16().cuda()
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
inputs = tokenizer(text=["My name is Llama 3"], return_tensors="pt")
inputs = to_cuda(inputs)

past_key_values = SepCache(init_cache_size=4,sep_cache_size=128,local_size=256,cache_size=512, layer_num=32, USE_MAX_SEP_CACHE=True, model_type='llama')
outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
outputs.past_key_values # access cache filled with key/values from generation

• When using the `update` function of SepCache to update the keys/values and the past token ids
(necessary in SepCache), the current `input_ids` must also be provided.

key_states, value_states, query_states = past_key_values.update(
 key_states = key_states,
 value_states = value_states,
 input_ids = input_ids,
 layer_idx = layer_idx,
 PREFILLING_FLAG = q_len > 1, ## `q_len` is the sequence length of the current `query_states`
 cache_kwargs = None)

14

End of Presentation

Thank you

@inproceedings{chen2025sepllm,
 title={{SepLLM: Accelerate Large Language Models by Compressing One Segment into

One Separator}},
 author={Chen, Guoxuan and Shi, Han and Li, Jiawei and Gao, Yihang and Ren, Xiaozhe

and Chen, Yimeng and Jiang, Xin and Li, Zhenguo and Liu, Weiyang and Huang, Chao},
 booktitle={International Conference on Machine Learning},
 year={2025}

}

Comments

Questions

Discussion

	Slide 1: SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator
	Slide 2: Background
	Slide 3: Observation
	Slide 4: Fundamental Design
	Slide 5: Tailored Streaming Design
	Slide 6: Experiments
	Slide 7: Experimental Results
	Slide 8: Training Process
	Slide 9: Long-Streaming Test
	Slide 10: Ablation Study
	Slide 11: Ablation Study
	Slide 12: Source Code and Usage
	Slide 13: Demo Usage
	Slide 14: End of Presentation Thank you

