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The Problem - Features are not Always Available

e Active Feature Acquisition (AFA): Sequentially
select what to measure to improve long term

predictive power, based on existing, instance-wise
information
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The Problem - Features are not Always Available

e Active Feature Acquisition (AFA): Sequentially
select what to measure to improve long term
predictive power, based on existing, instance-wise
information

e Application: Doctor diagnosing a patient, they
choose the test based on current observations for
each individual patient

Stochastic Encodings for
Active Feature Acquisition Paper ID: 11841



Existing Approaches

e Reinforcement Learning (RL) argmax WH(XO)i
o Natural solution for sequential decision making :
i€ld]\O

o  Suffers from training difficulty
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Existing Approaches

e Reinforcement Learning (RL)
o Natural solution for sequential decision making
o  Suffers from training difficulty

e Maximize Conditional Mutual Information
o  Grounded in information theory
o Makes myopic acquisitions
o Can be maximized by eliminating options
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argmax 7y (X0);

i€ld]\O

argmax I(X;;Y|x0)

icld)\O
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Indicator Example - CMI is Myopic

Binary classification, one feature is "The Indicator”, telling us which feature gives

the label:
x=1[0,0,1,0,1,3], y=1
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Indicator Example - CMI is Myopic

Binary classification, one feature is "The Indicator”, telling us which feature gives

the label:
x =[0,0,0,0,1,8], y=1
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Indicator Example - CMI is Myopic

Binary classification, one feature is "The Indicator”, telling us which feature gives

the label:
x =[0,0,0,0,1,8], y=1

CMI optimizes for immediate predictive power - does not select indicator first
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Indicator Example - CMI is Myopic

Binary classification, one feature is "The Indicator”, telling us which feature gives

the label:
x =[0,0,0,0,1,8], y=1

CMI optimizes for immediate predictive power - does not select indicator first

Insight: Considering possible values of unobserved features is necessary for
optimality and can be sufficient:

<

argmax E I(X;;Y|xy,x0)
ic[d\o P(xvlx0)
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Entropy Example

e CMI maximization can be achieved by making low likelihoods lower:

H([0.5,0.5,0.0]) = 0.693
H([0.7,0.15,0.15]) = 0.819
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Entropy Example

CMI maximization can be achieved by making low likelihoods lower:

H(]0.5,0.5,0.0]) = 0.693
H([0.7,0.15,0.15]) = 0.819
e Focus should be placed on identifying the most likely class, not on confirming

which ones are incorrect
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SEFA- Architecture
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e Each feature is separately encoded
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Sample /\

z~ pg(2|xs)
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py(Y = 1|2)

pe(Y = 2|z)
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SEFA- Architecture
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e Each feature is separately encoded
e Predictions made on latent samples,
multiple samples are taken to make full

prediction
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SEFA- Architecture
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e Each feature is separately encoded
e Predictions made on latent samples, o
multiple samples are taken to make full pos(ylxs) = E py(ylz)
" po(z|x5s)
prediction
e Supervised training with negative
log-likelihood and information bottleneck L = —logpg (Y |Xs) + BIg(Z; Xs)
regularization - avoids RL training
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SEFA - Acquisition Objective

argmax poo(Y =clxo) E r(c 2,1
ield)\O CEZ[C] ? ‘ )pe(z\xa) ( )

Stochastic Encodings for
Active Feature Acquisition Paper ID: 11841



SEFA - Acquisition Objective

argmax Po.o(Y = c|x0)
i€|d]\O CEZ[C]
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L r(c, z,1)

po(z|x0)

Latent Gradients as

Importance Measure:

r(c,2z,1) = 8412
) ) -

> llgg;ll2
g = V.pus(Y = c|z)
Gradients measure
importance of latents,
aggregated across the
feature that encodes them
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SEFA - Acquisition Objective

argmax poo(Y =clxo) E r(c z,1)
i€ld]\O CEZ[C] : Po(z[xo0) |

Latent Gradients as
Importance Measure:

- ||ggi 2
. r(c,2,1) =
Stochastic Encoders: Zj ||ggj||2
Consider many g = Vpus(Y = |z)

possible unobserved
feature values in
current decision

Gradients measure
importance of latents,
aggregated across the
feature that encodes them

Stochastic Encodings for

Active Feature Acquisition Paper ID: 11841



SEFA - Acquisition Objective

argmax Z po.o(Y = c|xp)
iE[d]\O Ice[C] I.

L r(c, z,1)

po(z|x0

) |
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Probability Weighting:

Latent Gradients as

Importance Measure:

Place more focus on Stochastic Encoders:
distinguishing between Consider many

likely labels possible unobserved
feature values in
current decision
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r(c,2z,1) = 8g.l>
> llgg;ll2
g = V.ps(Y = c|z)
Gradients measure
importance of latents,

aggregated across the
feature that encodes them

Paper ID: 11841




Why use the Latent Space?

argmax poo(Y =clxo) E r(c@, 1)
ic[d)\O CEZ[C] ? po(x0)
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Why use the Latent Space?

argmax poo(Y =clxo) E r(c@, 1)
ic[d)\O CEZ[C] ? po(x0)

e Gradients are more meaningful and comparable for the latents (same scale,
all continuous)
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Why use the Latent Space?

argmax poo(Y =clxo) E r(c@, 1)
ic[d)\O CEZ[C] ? po(x0)

e Gradients are more meaningful and comparable for the latents (same scale,
all continuous)
e [atents have less noise
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Why use the Latent Space?

argmax poo(Y =clxo) E r(c@, 1)
ic[d)\O CEZ[C] ? po(x0)

e Gradients are more meaningful and comparable for the latents (same scale,
all continuous)

e Latents have less noise
e Do not need to learn complex generative model
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Results - Tabular Data

wosel | Bk | Calfomia | yiigoone
DIME 0.907 £ 0.002 0.661 £ 0.002 0.951 £ 0.001
Fixed MLP | 0.909 = 0.001 0.658 = 0.002 0.954 + 0.000
GDFS 0.907 £ 0.001 0.653 £ 0.002 0.949 + 0.000
ORL 0.910 £ 0.000 0.657 £ 0.001 0.953 £ 0.000
SEFA 0.919 + 0.001 0.676 * 0.005 0.957 * 0.000
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Results - Cancer Classification

Model METABRIC

TCGA

DIME 0.670 + 0.007

0.805 + 0.002

Fixed MLP 0.685 + 0.003

0.799 + 0.004

GDFS 0.671 + 0.005

0.797 + 0.002

ORL 0.706 + 0.004

0.838 + 0.002

SEFA 0.709 £ 0.003

0.843 £ 0.002
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