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Constrained Correlation Clustering

Input:

• Complete graph with preferences on 

each edge (positive or negative)

• Some preferences are hard constraints

Output:

• A partition of  nodes violating the least 

number of  pairwise preferences and 

satisfies all hard constraints

Example: Feasible constrained clustering violates 

preferences of  AD, BD ⇒ Cost = 2
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Correlation Clustering

• Introduced by Bansal, Blum and Chawla [Bansal et al., Machine Learning ‘04]

⋮

• ⁓ 2-approximation (Solving the standard Linear Programming (LP) formulation) [Chawla et 
al., STOC ‘15]

⋮

• ⁓ 1.8-approximation (Local Search) [Cohen-Addad et al., STOC ‘24]
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This Work

Conceptually simple better-

than-2 approximation for 

Correlation Clustering

Novel way of  combining large 

LP and Local Search techniques

Better-than-2 approximation for 

Constrained Correlation Clustering, 

conditional on solution to a large 

Constrained LP
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Solution of  the “large” LP:

 poly-sized family of  clusters

Solution of  the “large” Constrained LP

Local Search move: swap a cluster in the clustering

Problem: Exponentially 

many possible clusters

Use it to guide Local Search

*Assume we have this

Guide Local Search, get solution 

for Constrained instance

Result: Better-than-2 approximation for both variants!
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Thank You!


