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Output:

* A partition of nodes violating the least
number of pairwise preferences and
satisfies all hard constraints

Best clustering for unconstrained instance might
not be feasible
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Input: ; \

* Complete graph with preferences on
each edge (positive or negative)

* Some preferences are hard constraints

Output:

* A partition of nodes violating the least
number of pairwise preferences and
satisfies all hard constraints

Example: Feasible constrained clustering violates
preferences of AD, BD = Cost = 2
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Constrained Correlation Clustering
* 3-approximation (LP)

* 16-approximation (Faster combinatorial algorithm)
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This Work

Novel way of combining large
LP and Local Search techniques

_—

Conceptually simple better- Better-than-2 approximation for
than-2 approximation for Constrained Correlation Clustering,
Correlation Clustering conditional on solution to a large
Constrained LP
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Local Search move: swap a cluster in the clustering

Solution of the “large” LP:
» poly-sized family of clusters

Use it to guide Local Search
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Solution of the “large” Constrained LLP

@ Guide Local Search, get solution

~FN | for Constrained instance

Result: Better-than-2 approximation for both variants!
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Thank You!



