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Cognitive Tasks Human/Digital Twin Intervention Performance Change

** Modeling human cognition is a fundamental challenge in understanding
human behaviors. A realistic simulation can enable a digital twin of
human cognition.
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Cognitive Tasks Human/Digital Twin Intervention Performance Change

*+ Research Gap: Most existing work focus on cognitive simulation under
ideal conditions, neglecting the influence of dynamic intervention from
the environment.
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Cognitive Tasks Human/Digital Twin Intervention Performance Change

¢ Our Core Research Question: How can we simulate the impact of
dynamic environmental stimuli on the regulation of human cognitive
behaviors with precision at a fine-grained level?



Framework

*» Integrate sequential models from cognitive science with data-driven deep
reinforcement learning (DRL).

» Data-Driven Model: Hard to represent the internal mechanisms of the cognitive process.
» Drift-Diffusion Model: Represent cognitive process in a sequential manner.
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Framework

*» Integrate sequential models from cognitive science with data-driven deep
reinforcement learning (DRL).
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» Step 1: Amachine agent to solve cognitive tasks.

» Step 2: Transfer task info from agent to human.

» Step 3: Decoding human cognitive process in task solving with drift-diffusion model (DDM).
» Step 4: Simulating stimuli perturbation on cognitive process with DDM-integrated DRL agent.



Evaluation: Response Time Simulation

MAPE
Model Input Type Model Type Name Mean STD
L LSTM + AlexNet 03344 02602
Task: Video, ’ ’

Feedback: Video

LSTM + VGG-16
LSTM + ViT-B-16
MLP + 3D ResNet

0.3355 0.2708
0.3339 0.2573
0.3330 0.2507

II.

Task: Encoded String,

Feedback: Video

LSTM-V1 + 3D ResNet
LSTM-V2 + 3D ResNet

MLP + 3D ResNet

Transformer + 3D ResNet

CogReact

0.3334 0.261

0.3376 0.2169
0.3331 0.2550
0.3306 0.2496
0.2999 0.2318

I1I.
Task: Numeric,
Feedback: Video

LSTM-V1 + 3D ResNet
LLSTM-V2 + 3D ResNet

MLP + 3D ResNet

Transformer + 3D ResNet

0.3341 0.2617
0.3286 0.2538
0.3333 0.2579
0.3315 0.2526

IV.
Task: Numeric,

Feedback: Numeric

Decision Tree
Linear Regression
LSTM

MLP

Random Forest
SVM
Transformer
CogReact

0.3617 0.3640
0.3595 0.3608
0.3059 0.2434
0.3293 0.2441
0.3650 0.3684
0.3299 0.3108
0.3052 0.2446
0.2703 0.2224

V.

Task: Encoded String,
Feedback: Numeric

Decision Tree
Linear Regression
LSTM

MLP

Random Forest
SVM

Transformer

0.3639 0.3639
0.3512 0.3469
0.3278 0.2478
0.3333 0.2577
0.3600 0.3630
0.3245 0.3101
0.3299 0.2481

** More realistic simulation across both
individuals and stimuli.

—— Pure DRL — SVM
General-level d

—— Hybrid DRL
a Individual-level b

Group-level L LOPO-level

A: none group, B: random group, C: static group, D: rule group



Evaluation: Response Time Simulation

** More consistent response time trends as real humans.

-===- Ground Truth — Hybrid DRL — Pure DRL
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Evaluation: Better Training Efficiency

** Better training efficiency for fast convergence.
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Evaluation: Interpretability

* Interpretability: Reflect cognitive trajectories as humans.
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Evaluation: Generalization

*» Diverse cognitive tasks, and different feedback modalities.

Table 2. Task/feedback information and dataset properties.

Task Information Simulation Modality Dataset Information
Task Type Response Type User Action Cognitive Response | Task Feedback Stage 1 Source Size User
Math Reasoning  Active Binary Response Time String Visual Math Agent | Ours 21,157 50
Decision Making Active Binary Response Time Numeric Numeric Risk Agent | Public 30,489 240
Learning Passive Continuous Curiosity Textual Textual  LLM Agent | Public 12,804 300




Evaluation: Generalization

** Diverse cognitive tasks, and

. . Hybrid DRL Hybrid DRL
different feedback modalities.

Pure DRL 1.616 Pure DRL
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