RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior

Ching-Hua Lee, Chouchang Yang, Jaejin Cho, Yashas Malur Saidutta, Rakshith Sharma Srinivasa, Yilin Shen, Hongxia Jin

Artificial Intelligence Center - Mountain View, Samsung Electronics Mountain View, CA, USA

2025

Signal Restoration with DDPMs

Signal restoration problems:
 Restoring clean signal x₀ from degraded input y

- Denoising Diffusion Probabilistic Models (DDPMs) demonstrate promising results for generating high-fidelity data with strong generalizability
- Can be used for signal restoration tasks, by conditioning the DDPM model θ on the observed degraded signal \mathbf{y} to recover \mathbf{x}_0

Inefficiency in Existing DDPM Modeling

- However, most existing DDPMs assume a standard Gaussian prior for simplicity, ignoring the correlation between the degraded and clean signals, leading to inefficiencies in both training and inference
- We propose RestoreGrad to improve modeling efficiency of DDPMs
 - The main idea is to jointly learn the diffusion prior with the conditional DDPM model

Figure: Proposed vs. standard methods.

Figure: Diffusion processes visualized.

Jointly Learnable Diffusion Priors: Combine with VAE

• To recover a clean signal \mathbf{x}_0 given a noisy signal \mathbf{y} with a model parameterized by θ :

$$\max_{\theta} \log p_{\theta}(\mathbf{x}_0|\mathbf{y}): \text{ conditional data log-likelihood}$$
 (1)

- Evidence lower bounds (ELBOs) for solving (1):
 - Conditional Variational Autoencoders (VAEs):

$$\geq \mathbb{E}_{q_{\phi}(\boldsymbol{\epsilon}|\mathbf{x}_{0},\mathbf{y})} \left[\log p_{\theta}(\mathbf{x}_{0}|\mathbf{y},\boldsymbol{\epsilon}) \right] - D_{\mathrm{KL}} \left(q_{\phi}(\boldsymbol{\epsilon}|\mathbf{x}_{0},\mathbf{y}) || p_{\theta}(\boldsymbol{\epsilon}|\mathbf{y}) \right)$$
(2)

Conditional DDPMs:

$$\geq \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p_{\theta}(\mathbf{x}_{0:T}|\mathbf{y})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right]$$
(3)

• RestoreGrad (ours):

$$\geq \mathbb{E}_{q_{\phi}(\boldsymbol{\epsilon}|\mathbf{x}_{0},\mathbf{y})} \left[\mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[\log \frac{p_{\theta}(\mathbf{x}_{0:T}|\mathbf{y},\boldsymbol{\epsilon})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right] \right] - D_{\mathrm{KL}} \left(q_{\phi}(\boldsymbol{\epsilon}|\mathbf{x}_{0},\mathbf{y}) || p_{\psi}(\boldsymbol{\epsilon}|\mathbf{y}) \right)$$

$$\tag{4}$$

Embraces the Best of Both Worlds: generative power (DDPM) for improved restoration quality, and modeling efficiency (VAE) for faster training/sampling

RestoreGrad Learning Framework

• The **new ELBO** that integrates DDPM into VAE:

$$\mathbb{E}_{q_{\phi}(\boldsymbol{\epsilon}|\mathbf{x}_{0},\mathbf{y})} \left[\underbrace{\mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[\log \frac{p_{\theta}(\mathbf{x}_{0:T}|\mathbf{y})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right]}_{\text{conditional DDPM} \theta} \right] - D_{\text{KL}} \left(\underbrace{q_{\phi}(\boldsymbol{\epsilon}|\mathbf{x}_{0},\mathbf{y})}_{\text{Posterior Net } \phi} || \underbrace{p_{\psi}(\boldsymbol{\epsilon}|\mathbf{y})}_{\text{Prior Net } \psi} \right)$$
(5)

leads to the joint optimization framework:

$$\min_{\theta,\phi,\psi} \mathcal{L}(\theta,\phi,\psi) = \eta \mathcal{L}_{LR} + \mathcal{L}_{DM} + \lambda \mathcal{L}_{PM}, \quad \eta > 0, \ \lambda > 0$$
 (6)

Figure: During training, the conditional DDPM θ , Prior Net ψ , and Posterior Net ϕ are jointly optimized by (6). During inference, the DDPM θ samples the latent noise ϵ from the jointly learned prior distribution to synthesize the clean signal.

Key Difference from Related Work

- Our idea was motivated by existing work on using data-dependent diffusion priors. E.g., PriorGrad:
 - S.-g. Lee et al., "PriorGrad: Improving conditional denoising diffusion models with data-dependent adaptive prior," in ICLR 2022
- On top of that, we have introduced the idea of jointly learnable priors by employing the prior and posterior encoders, ψ and ϕ :
 - PriorGrad:

$$\min_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, \mathbf{y}, t) \|_{\boldsymbol{\Sigma}_{y}^{-1}}^{2}, \text{ where } \boldsymbol{\Sigma}_{y} = f(\mathbf{y})$$
 (7)

and $f(\cdot)$ is a pre-defined function that maps y into the prior distribution.

• RestoreGrad (ours):

$$\min_{\theta,\phi,\psi} \eta \left(\bar{\alpha}_{T} \| \mathbf{x}_{0} \|_{\mathbf{\Sigma}_{\text{post}}^{-1}}^{2} + \log |\mathbf{\Sigma}_{\text{post}}| \right) + \| \epsilon - \epsilon_{\theta}(\mathbf{x}_{t}, \mathbf{y}, t) \|_{\mathbf{\Sigma}_{\text{post}}^{-1}}^{2} + \lambda \left(\log \frac{|\mathbf{\Sigma}_{\text{prior}}|}{|\mathbf{\Sigma}_{\text{post}}|} + \text{tr}(\mathbf{\Sigma}_{\text{prior}}^{-1} \mathbf{\Sigma}_{\text{post}}) \right). \tag{8}$$

By utilizing encoders for the prior, we bypass the manual search process for a suitable mapping function $f(\cdot)$, which requires certain domain knowledge given a specific task. Our framework is thus applicable to **more modalities**.

Improved Model Learning Efficiency

Figure: (Top) In speech domain, RestoreGrad outperforms PriorGrad, a recently proposed improvement to baseline DDPM (CDiffuSE) that leverages handcrafted data-dependent priors. (Bottom) In image domain, RestoreGrad provides a paradigm to improve DDPM baseline (RainDropDiff).

Inference Efficiency and Restoration Examples

Figure: Robustness to the reduction in reverse sampling time steps for inference.

Figure: Image restoration examples. Restore Grad was trained for 2 times fewer steps than Weather Diff.

Conclusion

- New diffusion-based signal restoration through integrating conditional DDPMs with VAEs
- Leveraging jointly learnable diffusion priors to achieved improved restoration quality and faster training and sampling
- \bullet General and applicable to multiple modalities (audio, images, ...)