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Signal Restoration with DDPMs
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@ Signal restoration problems:
Restoring clean signal x¢ from
degraded input y
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@ Can be used for signal restoration tasks,
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the observed degraded signal y to
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Inefficiency in Existing DDPM Modeling

@ However, most existing DDPMs assume a standard Gaussian prior for
simplicity, ignoring the correlation between the degraded and clean signals,
leading to inefficiencies in both training and inference

@ We propose RestoreGrad to improve modeling efficiency of DDPMs

- The main idea is to jointly learn the diffusion prior with the conditional DDPM
model
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Figure: Proposed vs. standard methods. Figure: Diffusion processes visualized.




Jointly Learnable Diffusion Priors: Combine with VAE

@ To recover a clean signal x¢ given a noisy signal y with a model parameterized
by 0:
max log pe(xo]y) : conditional data log-likelihood (1)

@ Evidence lower bounds (ELBOs) for solving (1):

o Conditional Variational Autoencoders (VAEs):

> Eq, (elxo,y) [108Po(x0ly, €)] — Dxr. (44 (elxo, ) llpo(ely)) (2)
@ Conditional DDPMs:
po (x0:7y)
> Epxs x| log —m Y] 3
2 BaGxrrxo) { gq(xlszo)] (3)

@ RestoreGrad (ours):

X0: €
2 gy (elxo.y) [Eq(xmxo) {10% ngxf;:zo))” = Dx (¢ (elx0, y)lpy (€]y))
(4)
Embraces the Best of Both Worlds: generative power (DDPM) for
improved restoration quality, and modeling efficiency (VAE) for faster
training/sampling
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RestoreGrad Learning Framework

@ The new ELBO that integrates DDPM into VAE:

Eq¢(e|x0,y) q(x1:T‘x0)

conditional DDPM 60
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leads to the joint optimization framework:
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Figure: During training, the conditional DDPM @, Prior Net 1, and Posterior Net
¢ are jointly optimized by (6). During inference, the DDPM 6 samples the latent
noise € from the jointly learned prior distribution to synthesize the clean signal.
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Key Difference from Related Work

@ Our idea was motivated by existing work on using data-dependent diffusion
priors. E.g., PriorGrad:
- S.-g. Lee et al., “PriorGrad: Improving conditional denoising diffusion models
with data-dependent adaptive prior,” in ICLR 2022

@ On top of that, we have introduced the idea of jointly learnable priors by
employing the prior and posterior encoders, ¢ and ¢:
@ PriorGrad:
min [l — e(xt,y, 0|51, where 3y = f(y) (7
Y

and f(-) is a pre-defined function that maps y into the prior distribution.

o RestoreGrad (ours):

o 2
wolugy, Tos® e —eo(xt,y, 1)|12
min n(ar ol -+ logSpo) +lle = o(xe.y. 021
2 1 |Eprior| t 271 - (8)
A Ogm + (B o post))-

By utilizing encoders for the prior, we bypass the manual search process for a
suitable mapping function f(-), which requires certain domain knowledge given
a specific task. Our framework is thus applicable to more modalities.
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Improved Model Learning Efficiency

Speech enhancement (SE) comparison of conditional DDPMs
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Image restoration (IR) comparison of conditional DDPMs
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Figure: (Top) In speech domain, RestoreGrad outperforms PriorGrad, a recently
proposed improvement to baseline DDPM (CDiffuSE) that leverages handcrafted
data-dependent priors. (Bottom) In image domain, RestoreGrad provides a
paradigm to improve DDPM baseline (RainDropDiff).




Inference Efficiency and Restoration Examples
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Figure: Robustness to the reduction in reverse sampling time steps for inference.
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Figure: Image restoration examples. RestoreGrad was trained for 2 times fewer
steps than WeatherDiff.




Conclusion

o New diffusion-based signal restoration through integrating
conditional DDPMs with VAEs

e Leveraging jointly learnable diffusion priors to achieved improved
restoration quality and faster training and sampling

e General and applicable to multiple modalities (audio, images, ...)
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