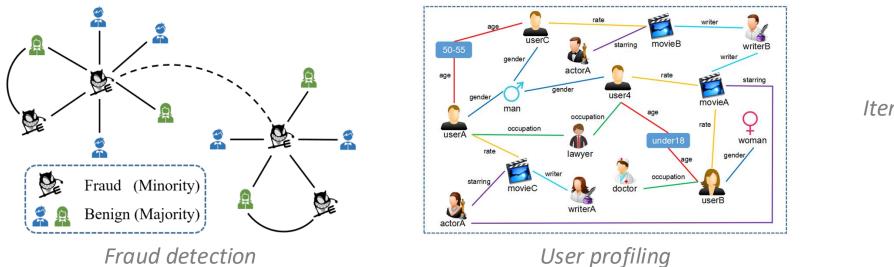


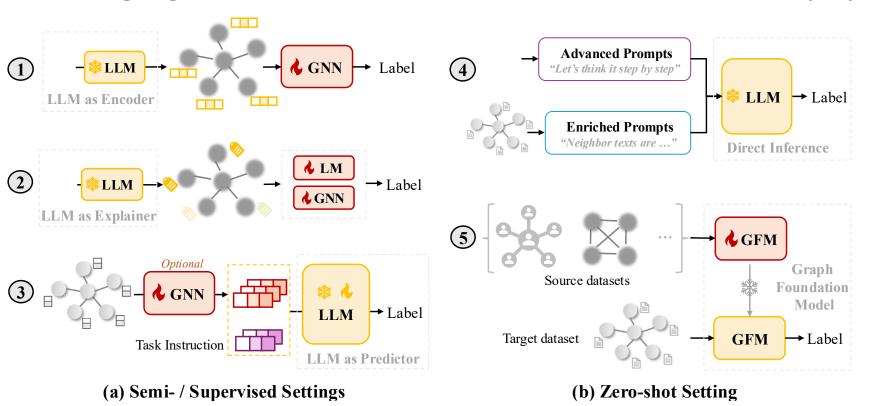
When Do LLMs Help With Node Classification? A Comprehensive Analysis


Xixi Wu¹ Yifei Shen² Fangzhou Ge¹ Caihua Shan² Yizhu Jiao³ Xiangguo Sun¹ Hong Cheng¹

¹The Chinese University of Hong Kong ²Microsoft Research Asia ³University of Illinois Urbana-Champaign

Motivation

Node classification is a fundamental task in graph analysis



Item tagging

Even a marginal improvement in classification accuracy could result in substantial financial profits

Motivation

Leveraging LLMs for node classification has become popular

Superior semantic comprehension of LLMs overcome the limitations of shallow embeddings

Motivation

- Designing principles for LLM-based node classification algorithms remain elusive
 - For each algorithm category, what is the most suitable setting?
 - Under what scenarios, LLMs can surpass traditional LMs like BERT?
 - ...

Unified Benchmark

Evaluate all methods using consistent dataloaders, learning paradigms, backbones, and implementation codebases

Controlled Experiments

Consider comprehensive variables including learning paradigms, language model type & size, graph characteristics, etc

Benchmark - LLMNodeBed

- Contains 14 datasets with varying scales, domain, and homophily
- Integrates 8 LLM-based algorithms,
 8 classic methods
- Supports 3 different learning paradigms: semi-supervised, supervised, and zero-shot

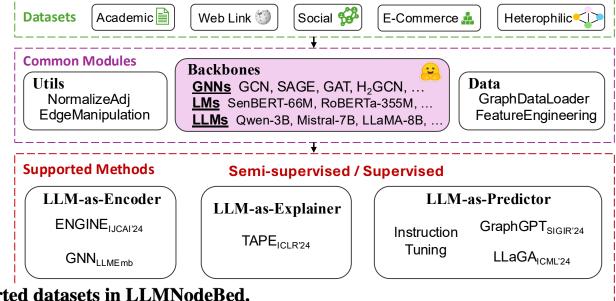


Table 1: Statistics of supported datasets in LLMNodeBed.

Statistics		Academic			Web Link Social				E-Commer	rce		Н	eterophilic		ndation Models
Statistics	Cora	Citeseer	Pubmed	arXiv	WikiCS	Instagram	Reddit	Books	Photo	Computer	Cornell	Texas	Wisconsin	Washington	Fine-tuned LLMs
# Classes	7	6	3	40	10	2	2	12	12	10	5	5	5	5	
# Nodes	2,708	3,186	19,717	169,343	11,701	11,339	33,434	41,551	48,362	87,229	191	187	265	229	
# Edges	5,429	4,277	44,338	1,166,243	215,863	144,010	198,448	358,574	500,928	721,081	292	310	510	394	
Avg. # Token	183.4	210.0	446.5	239.8	629.9	56.2	197.3	337.0	201.5	123.1	594.6	453.2	639.1	469.0	Hallucination
Homophily (%)	82.52	72.93	79.24	63.53	68.67	63.35	55.52	78.05	78.50	85.28	11.55	6.69	16.27	17.07	

• Semi-supervised & Supervised

Comparing Classic and LLM-based,
introducing LLMs to exploit textual
information is useful

Semi	-supervised	Cora	Citeseer	Pubmed	WikiCS	Instagram	Reddit	Books	Photo	Computer	Avg.
	$GCN_{ShallowEmb}$	$82.30_{\pm0.19}$	$70.55_{\pm 0.32}$	$78.94_{\pm0.27}$	$79.86_{\pm0.19}$	$63.50_{\pm 0.11}$	$61.44_{\pm0.38}$	$68.79_{\pm 0.46}$	$69.25_{\pm 0.81}$	$71.44_{\pm 1.19}$	71.79
	$SAGE_{ShallowEmb}$	$82.27_{\pm 0.37}$	$69.56_{\pm0.43}$	$77.88_{\pm0.44}$	$79.67_{\pm 0.25}$	$63.57_{\pm0.10}$	$56.65_{\pm0.33}$	$72.01_{\pm 0.33}$	$78.50_{\pm 0.15}$	$81.43_{\pm 0.27}$	73.50
Classic	GATShallowEmb	$81.30_{\pm 0.67}$	$69.94_{\pm 0.74}$	$78.49_{\pm 0.70}$	$79.99_{\pm 0.65}$	$63.56_{\pm0.04}$	$60.60_{\pm 1.17}$	$74.35_{\pm 0.35}$	$80.40_{\pm 0.45}$	$83.39_{\pm0.22}$	74.67
Classic	SenBERT-66M	$66.66_{\pm 1.42}$	$60.52_{\pm 1.62}$	$36.04_{\pm 2.92}$	$77.77_{\pm 0.75}$	$59.00_{\pm 1.17}$	$56.05_{\pm 0.41}$	$83.68_{\pm0.19}$	$73.89_{\pm0.31}$	$70.76_{\pm 0.15}$	64.93
	RoBERTa-355M	$72.24_{\pm 1.14}$	$66.68_{\pm 2.03}$	$42.32_{\pm 1.56}$	$76.81_{\pm 1.04}$	$63.52_{\pm0.44}$	$59.27_{\pm 0.34}$	$84.62_{\pm 0.16}$	$74.79_{\pm 1.13}$	$72.31_{\pm 0.37}$	68.06
	GLEM	$81.30_{\pm0.88}$	$68.80_{\pm 2.46}$	$\pmb{81.70}_{\pm 1.07}$	$76.43_{\pm 0.55}$	$60.25_{\pm 3.66}$	$55.13_{\pm 1.41}$	$83.28_{\pm0.39}$	$76.93_{\pm 0.49}$	$80.46_{\pm 1.45}$	73.81
Encoder	GCN_{LLMEmb}	83.33 _{±0.75}	$71.39_{\pm 0.90}$	$78.71_{\pm 0.45}$	$80.94_{\pm0.16}$	$67.49_{\pm 0.43}$	$68.65_{\pm 0.75}$	$83.03_{\pm 0.34}$	$84.84_{\pm0.47}$	$88.22_{\pm 0.16}$	78.51
Encoder	ENGINE	$84.22_{\pm 0.46}$	$72.14_{\pm 0.74}$	$77.84_{\pm0.27}$	$80.94_{\pm0.19}$	$67.14_{\pm0.46}$	$69.67_{\pm 0.16}$	$82.89_{\pm 0.14}$	$84.33_{\pm 0.57}$	$86.42_{\pm0.23}$	78.40
Explainer	TAPE	84.04 _{±0.24}	$71.87_{\pm 0.35}$	$78.61_{\pm 1.23}$	$81.94_{\pm0.16}$	$66.07_{\pm0.10}$	$62.43_{\pm 0.47}$	$84.92_{\pm 0.26}$	$86.46_{\pm0.12}$	$89.52_{\pm 0.04}$	78.43
	LLM_{IT}	$67.00_{\pm0.16}$	$54.26_{\pm0.22}$	$80.99_{\pm 0.43}$	$75.02_{\pm0.16}$	$41.83_{\pm0.47}$	$54.09_{\pm 1.02}$	$80.92_{\pm 1.38}$	$71.28_{\pm 1.81}$	$66.99_{\pm 2.02}$	65.76
Predictor	GraphGPT	$64.72_{\pm 1.50}$	$64.58_{\pm 1.55}$	$70.34_{\pm 2.27}$	$70.71_{\pm 0.37}$	$62.88_{\pm 2.14}$	$58.25_{\pm 0.37}$	$81.13_{\pm 1.52}$	$77.48_{\pm 0.78}$	$80.10_{\pm 0.76}$	70.02
	LLaGA	$78.94_{\pm 1.14}$	$62.61_{\pm 3.63}$	$65.91_{\pm 2.09}$	$76.47_{\pm 2.20}$	$65.84_{\pm0.72}$	$70.10_{\pm 0.38}$	$83.47_{\pm 0.45}$	$84.44_{\pm 0.90}$	$87.82_{\pm 0.53}$	75.07

Su	Supervised		Citeseer	Pubmed	arXiv	WikiCS	Instagram	Reddit	Books	Photo	Computer	Avg.
	GCNShallowEmb	87.41 _{±2.08}	$75.74_{\pm 1.20}$	$89.01_{\pm 0.59}$	$71.39_{\pm 0.28}$	$83.67_{\pm0.63}$	$63.94_{\pm0.61}$	$65.07_{\pm0.38}$	$76.94_{\pm0.26}$	$73.34_{\pm 1.34}$	$77.16_{\pm 3.80}$	76.37
	$SAGE_{ShallowEmb}$	$87.44_{\pm 1.74}$	$74.96_{\pm 1.20}$	$90.47_{\pm 0.25}$	$71.21_{\pm 0.18}$	$84.86_{\pm 0.91}$	$64.14_{\pm 0.47}$	$61.52_{\pm 0.60}$	$79.40_{\pm 0.45}$	$84.59_{\pm 0.32}$	$87.77_{\pm 0.34}$	78.64
Classic	GATShallowEmb	$86.68_{\pm 1.12}$	$73.73_{\pm 0.94}$	$88.25_{\pm 0.47}$	$71.57_{\pm 0.25}$	$83.94_{\pm0.61}$	$64.93_{\pm 0.75}$	$64.16_{\pm 1.05}$	$80.61_{\pm 0.49}$	$84.84_{\pm 0.69}$	$88.32_{\pm0.24}$	78.70
Classic	SenBERT-66M	$79.61_{\pm 1.40}$	$74.06_{\pm 1.26}$	$94.47_{\pm 0.33}$	$72.66_{\pm0.24}$	$86.51_{\pm0.86}$	$60.11_{\pm 0.93}$	$58.70_{\pm 0.54}$	$85.99_{\pm0.58}$	$77.72_{\pm 0.35}$	$74.22_{\pm 0.21}$	76.40
	RoBERTa-355M	$83.17_{\pm0.84}$	$75.90_{\pm 1.69}$	$94.84_{\pm0.06}$	$74.12_{\pm 0.12}$	$87.47_{\pm 0.83}$	$63.75_{\pm 1.13}$	$60.61_{\pm 0.24}$	$86.65_{\pm0.38}$	$79.45_{\pm 0.37}$	$75.76_{\pm0.30}$	78.17
	GLEM	$86.81_{\pm 1.19}$	$73.24_{\pm 1.55}$	$93.98_{\pm0.32}$	$73.55_{\pm0.22}$	$79.81_{\pm 0.45}$	$67.39_{\pm 1.73}$	$53.11_{\pm 2.96}$	$83.98_{\pm 0.97}$	$78.16_{\pm 0.45}$	$81.63_{\pm 0.46}$	77.17
Encoder	GCN_{LLMEmb}	$88.15_{\pm 1.79}$	$76.45_{\pm 1.19}$	$88.38_{\pm0.68}$	$74.39_{\pm0.31}$	$84.78_{\pm0.86}$	$68.27_{\pm 0.45}$	$70.65_{\pm 0.75}$	$84.23_{\pm 0.20}$	$86.07_{\pm0.20}$	$89.52_{\pm0.31}$	81.09
Encoder	ENGINE	$87.00_{\pm 1.60}$	$75.82_{\pm 1.52}$	$90.08_{\pm 0.16}$	$74.69_{\pm 0.36}$	$85.44_{\pm0.53}$	$68.87_{\pm 0.25}$	$71.21_{\pm 0.77}$	$84.09_{\pm0.09}$	$86.98_{\pm 0.06}$	$89.05_{\pm 0.13}$	81.32
Explainer	TAPE	88.05 _{±1.76}	$76.45_{\pm 1.60}$	$93.00_{\pm0.13}$	$74.96_{\pm0.14}$	87.11 _{±0.66}	68.11 _{±0.54}	$66.22_{\pm0.83}$	$85.95_{\pm0.59}$	$87.72_{\pm0.28}$	$90.46_{\pm0.18}$	81.80
	LLM_{IT}	$71.93_{\pm 1.47}$	$60.97_{\pm 3.97}$	$94.16_{\pm 0.19}$	76.08	$80.61_{\pm 0.47}$	$44.20_{\pm 3.06}$	$58.30_{\pm0.48}$	$84.80_{\pm0.13}$	$78.27_{\pm 0.54}$	$74.51_{\pm 0.53}$	72.38
Predictor	GraphGPT	$82.29_{\pm 0.26}$		$93.54_{\pm 0.22}$	$75.15_{\pm0.14}$	$82.54_{\pm0.23}$	$67.00_{\pm 1.22}$	$60.72_{\pm 1.47}$	$85.38_{\pm 0.72}$	$84.46_{\pm0.36}$	$86.78_{\pm 1.14}$	79.25
	LLaGA	$87.55_{\pm 1.15}$	$76.73_{\pm 1.70}$	$90.28_{\pm 0.91}$	$74.49_{\pm 0.23}$	$84.03_{\pm 1.10}$	$69.16_{\pm 0.72}$	$71.06_{\pm 0.38}$	$85.56_{\pm 0.30}$	$87.62_{\pm0.30}$	$90.41_{\pm 0.12}$	81.69

• Semi-supervised & Supervised

Comparing Semi-supervised and Supervised,
LLMs can bring greater improvements in
semi-supervised settings than supervised

Semi	Semi-supervised		Citeseer	Pubmed	WikiCS	Instagram	Reddit	Books	Photo	Computer	Avg.
	$GCN_{ShallowEmb}$	$82.30_{\pm0.19}$	$70.55_{\pm 0.32}$	$78.94_{\pm0.27}$	$79.86_{\pm0.19}$	$63.50_{\pm 0.11}$	$61.44_{\pm0.38}$	$68.79_{\pm 0.46}$	$69.25_{\pm 0.81}$	$71.44_{\pm 1.19}$	71.79
	$SAGE_{ShallowEmb}$	$82.27_{\pm 0.37}$	$69.56_{\pm0.43}$	$77.88_{\pm0.44}$	$79.67_{\pm 0.25}$	$63.57_{\pm0.10}$	$56.65_{\pm0.33}$	$72.01_{\pm 0.33}$	$78.50_{\pm 0.15}$	$81.43_{\pm 0.27}$	73.50
Classic	GATShallowEmb	$81.30_{\pm 0.67}$	$69.94_{\pm 0.74}$	$78.49_{\pm 0.70}$	$79.99_{\pm 0.65}$	$63.56_{\pm0.04}$	$60.60_{\pm 1.17}$	$74.35_{\pm 0.35}$	$80.40_{\pm 0.45}$	$83.39_{\pm0.22}$	74.67
Classic	SenBERT-66M	$66.66_{\pm 1.42}$	$60.52_{\pm 1.62}$	$36.04_{\pm 2.92}$	$77.77_{\pm 0.75}$	$59.00_{\pm 1.17}$	$56.05_{\pm 0.41}$	$83.68_{\pm0.19}$	$73.89_{\pm0.31}$	$70.76_{\pm0.15}$	64.93
	RoBERTa-355M	$72.24_{\pm 1.14}$	$66.68_{\pm 2.03}$	$42.32_{\pm 1.56}$	$76.81_{\pm 1.04}$	$63.52_{\pm 0.44}$	$59.27_{\pm 0.34}$	$84.62_{\pm0.16}$	$74.79_{\pm 1.13}$	$72.31_{\pm 0.37}$	68.06
	GLEM	$81.30_{\pm 0.88}$	$68.80_{\pm 2.46}$	$\pmb{81.70}_{\pm 1.07}$	$76.43_{\pm 0.55}$	$60.25_{\pm 3.66}$	$55.13_{\pm 1.41}$	$83.28_{\pm0.39}$	$76.93_{\pm 0.49}$	$80.46_{\pm 1.45}$	73.81
Encoder	GCN_{LLMEmb}	83.33 _{±0.75}	$71.39_{\pm 0.90}$	$78.71_{\pm 0.45}$	$80.94_{\pm0.16}$	$67.49_{\pm 0.43}$	$68.65_{\pm 0.75}$	$83.03_{\pm 0.34}$	$84.84_{\pm0.47}$	$88.22_{\pm0.16}$	78.51
Encoder	ENGINE	$84.22_{\pm 0.46}$	$72.14_{\pm 0.74}$	$77.84_{\pm 0.27}$	$80.94_{\pm0.19}$	$67.14_{\pm0.46}$	$69.67_{\pm0.16}$	$82.89_{\pm 0.14}$	$84.33_{\pm 0.57}$	$86.42_{\pm0.23}$	78.40
Explainer	TAPE	84.04 _{±0.24}	$71.87_{\pm 0.35}$	$78.61_{\pm 1.23}$	$81.94_{\pm0.16}$	$66.07_{\pm0.10}$	$62.43_{\pm 0.47}$	$84.92_{\pm 0.26}$	$86.46_{\pm0.12}$	$89.52_{\pm 0.04}$	78.43
	LLM_{IT}	$67.00_{\pm0.16}$	$54.26_{\pm0.22}$	$80.99_{\pm0.43}$	$75.02_{\pm0.16}$	$41.83_{\pm 0.47}$	$54.09_{\pm 1.02}$	$80.92_{\pm 1.38}$	$71.28_{\pm 1.81}$	$66.99_{\pm 2.02}$	65.76
Predictor	GraphGPT	$64.72_{\pm 1.50}$	$64.58_{\pm 1.55}$	$70.34_{\pm 2.27}$	$70.71_{\pm 0.37}$	$62.88_{\pm 2.14}$	$58.25_{\pm 0.37}$	$81.13_{\pm 1.52}$	$77.48_{\pm 0.78}$	$80.10_{\pm 0.76}$	70.02
	LLaGA	$78.94_{\pm 1.14}$	$62.61_{\pm 3.63}$	$65.91_{\pm 2.09}$	$76.47_{\pm 2.20}$	$65.84_{\pm0.72}$	$70.10_{\pm 0.38}$	$83.47_{\pm 0.45}$	$84.44_{\pm 0.90}$	$87.82_{\pm0.53}$	75.07

Su	Supervised		Citeseer	Pubmed	arXiv	WikiCS	Instagram	Reddit	Books	Photo	Computer	Avg.
	$GCN_{ShallowEmb}$	$87.41_{\pm 2.08}$	$75.74_{\pm 1.20}$	$89.01_{\pm 0.59}$	$71.39_{\pm0.28}$	$83.67_{\pm0.63}$	$63.94_{\pm0.61}$	$65.07_{\pm0.38}$	$76.94_{\pm0.26}$	$73.34_{\pm 1.34}$	$77.16_{\pm 3.80}$	76.37
	$SAGE_{ShallowEmb}$	87.44 _{±1.74}	$74.96_{\pm 1.20}$	$90.47_{\pm 0.25}$	$71.21_{\pm 0.18}$	$84.86_{\pm 0.91}$	$64.14_{\pm 0.47}$	$61.52_{\pm 0.60}$	$79.40_{\pm 0.45}$	$84.59_{\pm 0.32}$	$87.77_{\pm 0.34}$	78.64
Classia	GATShallowEmb	$86.68_{\pm 1.12}$	$73.73_{\pm 0.94}$	$88.25_{\pm 0.47}$	$71.57_{\pm 0.25}$	$83.94_{\pm 0.61}$	$64.93_{\pm 0.75}$	$64.16_{\pm 1.05}$	$80.61_{\pm 0.49}$	$84.84_{\pm 0.69}$	$88.32_{\pm 0.24}$	78.70
Classic	SenBERT-66M	$79.61_{\pm 1.40}$	$74.06_{\pm 1.26}$	$94.47_{\pm 0.33}$	$72.66_{\pm0.24}$	$86.51_{\pm0.86}$	$60.11_{\pm 0.93}$	$58.70_{\pm 0.54}$	$85.99_{\pm0.58}$	$77.72_{\pm 0.35}$	$74.22_{\pm 0.21}$	76.40
	RoBERTa-355M	$83.17_{\pm 0.84}$	$75.90_{\pm 1.69}$	$94.84_{\pm0.06}$	$74.12_{\pm 0.12}$	$87.47_{\pm 0.83}$	$63.75_{\pm 1.13}$	$60.61_{\pm 0.24}$	$86.65_{\pm0.38}$	$79.45_{\pm 0.37}$	$75.76_{\pm0.30}$	78.17
	GLEM	$86.81_{\pm 1.19}$	$73.24_{\pm 1.55}$	$93.98_{\pm0.32}$	$73.55_{\pm 0.22}$	$79.81_{\pm 0.45}$	$67.39_{\pm 1.73}$	$53.11_{\pm 2.96}$	$83.98_{\pm 0.97}$	$78.16_{\pm 0.45}$	$81.63_{\pm 0.46}$	77.17
Encoden	GCN _{LLMEmb}	88.15 _{±1.79}	$76.45_{\pm 1.19}$	88.38 _{±0.68}	$74.39_{\pm0.31}$	84.78 _{±0.86}	$68.27_{\pm 0.45}$	$70.65_{\pm 0.75}$	84.23 _{±0.20}	$86.07_{\pm 0.20}$	89.52 _{±0.31}	81.09
Encoder	ENGINE	$87.00_{\pm 1.60}$	$75.82_{\pm 1.52}$	$90.08_{\pm 0.16}$	$74.69_{\pm 0.36}$	$85.44_{\pm0.53}$	$68.87_{\pm 0.25}$	$71.21_{\pm 0.77}$	$84.09_{\pm 0.09}$	$86.98_{\pm 0.06}$	$89.05_{\pm 0.13}$	81.32
Explainer	TAPE	88.05 _{±1.76}	$76.45_{\pm 1.60}$	$93.00_{\pm0.13}$	$74.96_{\pm 0.14}$	87.11 _{±0.66}	68.11 _{±0.54}	$66.22_{\pm0.83}$	$85.95_{\pm0.59}$	$87.72_{\pm0.28}$	$90.46_{\pm0.18}$	81.80
	LLM_{IT}	$71.93_{\pm 1.47}$	$60.97_{\pm 3.97}$	$94.16_{\pm0.19}$	76.08	$80.61_{\pm 0.47}$	$44.20_{\pm 3.06}$	$58.30_{\pm0.48}$	$84.80_{\pm0.13}$	$78.27_{\pm 0.54}$	$74.51_{\pm 0.53}$	72.38
Predictor	GraphGPT	$82.29_{\pm 0.26}$	$74.67_{\pm 1.15}$	$93.54_{\pm 0.22}$	$75.15_{\pm0.14}$	$82.54_{\pm0.23}$	$67.00_{\pm 1.22}$	$60.72_{\pm 1.47}$	$85.38_{\pm 0.72}$	$84.46_{\pm 0.36}$	$86.78_{\pm 1.14}$	79.25
	LLaGA	$87.55_{\pm 1.15}$	$76.73_{\pm 1.70}$	$90.28_{\pm 0.91}$	$74.49_{\pm0.23}$	$84.03_{\pm 1.10}$	$69.16_{\pm 0.72}$	$71.06_{\pm 0.38}$	$85.56_{\pm 0.30}$	$87.62_{\pm0.30}$		81.69

• Semi-supervised & Supervised

Semi	-supervised	Cora	Citeseer	Pubmed	WikiCS	Instagram	Reddit	Books	Photo	Computer	Avg.
	$GCN_{ShallowEmb}$	$82.30_{\pm0.19}$	$70.55_{\pm 0.32}$	$78.94_{\pm0.27}$	$79.86_{\pm0.19}$	$63.50_{\pm 0.11}$	$61.44_{\pm 0.38}$	$68.79_{\pm 0.46}$	$69.25_{\pm 0.81}$	$71.44_{\pm 1.19}$	71.79
	$SAGE_{ShallowEmb}$	$82.27_{\pm 0.37}$	$69.56_{\pm0.43}$	$77.88_{\pm0.44}$	$79.67_{\pm 0.25}$	$63.57_{\pm0.10}$	$56.65_{\pm0.33}$	$72.01_{\pm 0.33}$	$78.50_{\pm 0.15}$	$81.43_{\pm 0.27}$	73.50
Classic	GATShallowEmb	$81.30_{\pm 0.67}$	$69.94_{\pm 0.74}$	$78.49_{\pm 0.70}$	$79.99_{\pm 0.65}$	$63.56_{\pm0.04}$	$60.60_{\pm 1.17}$	$74.35_{\pm 0.35}$	$80.40_{\pm 0.45}$	$83.39_{\pm 0.22}$	74.67
Classic	SenBERT-66M	$66.66_{\pm 1.42}$	$60.52_{\pm 1.62}$	$36.04_{\pm 2.92}$	$77.77_{\pm 0.75}$	$59.00_{\pm 1.17}$	$56.05_{\pm 0.41}$	$83.68_{\pm0.19}$	$73.89_{\pm0.31}$	$70.76_{\pm 0.15}$	64.93
	RoBERTa-355M	$72.24_{\pm 1.14}$	$66.68_{\pm 2.03}$	$42.32_{\pm 1.56}$	$76.81_{\pm 1.04}$	$63.52_{\pm0.44}$	$59.27_{\pm 0.34}$	$84.62_{\pm 0.16}$	$74.79_{\pm 1.13}$	$72.31_{\pm 0.37}$	68.06
	GLEM	$81.30_{\pm 0.88}$	$68.80_{\pm 2.46}$	$\pmb{81.70}_{\pm 1.07}$	$76.43_{\pm 0.55}$	$60.25_{\pm 3.66}$	$55.13_{\pm 1.41}$	$83.28_{\pm0.39}$	$76.93_{\pm 0.49}$	$80.46_{\pm 1.45}$	73.81
Emandan	GCN_{LLMEmb}	83.33 _{±0.75}	$71.39_{\pm 0.90}$	$78.71_{\pm 0.45}$	$80.94_{\pm0.16}$	$67.49_{\pm 0.43}$	$68.65_{\pm 0.75}$	$83.03_{\pm0.34}$	$84.84_{\pm0.47}$	$88.22_{\pm0.16}$	78.51
Encoder	ENGINE	$84.22_{\pm 0.46}$	$72.14_{\pm 0.74}$	$77.84_{\pm0.27}$	$80.94_{\pm0.19}$	$67.14_{\pm0.46}$	$69.67_{\pm 0.16}$	$82.89_{\pm 0.14}$	$84.33_{\pm 0.57}$	$86.42_{\pm0.23}$	78.40
Explainer	TAPE	84.04 _{±0.24}	$71.87_{\pm 0.35}$	$78.61_{\pm 1.23}$	$81.94_{\pm0.16}$	$66.07_{\pm0.10}$	$62.43_{\pm 0.47}$	$84.92_{\pm 0.26}$	$86.46_{\pm0.12}$	$89.52_{\pm 0.04}$	78.43
	LLM_{IT}	$67.00_{\pm0.16}$	$54.26_{\pm0.22}$	$80.99_{\pm 0.43}$	$75.02_{\pm 0.16}$	$41.83_{\pm 0.47}$	$54.09_{\pm 1.02}$	$80.92_{\pm 1.38}$	$71.28_{\pm 1.81}$	$66.99_{\pm 2.02}$	65.76
Predictor	GraphGPT	$64.72_{\pm 1.50}$	$64.58_{\pm 1.55}$	$70.34_{\pm 2.27}$	$70.71_{\pm 0.37}$	$62.88_{\pm 2.14}$	$58.25_{\pm 0.37}$	$81.13_{\pm 1.52}$	$77.48_{\pm 0.78}$	$80.10_{\pm 0.76}$	70.02
	LLaGA	$78.94_{\pm 1.14}$	$62.61_{\pm 3.63}$	$65.91_{\pm 2.09}$	$76.47_{\pm 2.20}$	$65.84_{\pm 0.72}$	$70.10_{\pm 0.38}$	$83.47_{\pm 0.45}$	$84.44_{\pm 0.90}$	$87.82_{\pm 0.53}$	75.07

Su	ıpervised	Cora	Citeseer	Pubmed	arXiv	WikiCS	Instagram	Reddit	Books	Photo	Computer	Avg.
	$GCN_{ShallowEmb}$	$87.41_{\pm 2.08}$	$75.74_{\pm 1.20}$	$89.01_{\pm 0.59}$	$71.39_{\pm0.28}$	$83.67_{\pm0.63}$	$63.94_{\pm0.61}$	$65.07_{\pm0.38}$	$76.94_{\pm0.26}$	$73.34_{\pm 1.34}$	$77.16_{\pm 3.80}$	76.37
	$SAGE_{ShallowEmb}$	$87.44_{\pm 1.74}$	$74.96_{\pm 1.20}$	$90.47_{\pm 0.25}$	$71.21_{\pm 0.18}$	$84.86_{\pm 0.91}$	$64.14_{\pm 0.47}$	$61.52_{\pm 0.60}$	$79.40_{\pm 0.45}$	$84.59_{\pm 0.32}$	$87.77_{\pm 0.34}$	78.64
Classic	$\operatorname{GAT}_{\operatorname{ShallowEmb}}$	$86.68_{\pm 1.12}$	$73.73_{\pm 0.94}$	$88.25_{\pm 0.47}$	$71.57_{\pm 0.25}$	$83.94_{\pm0.61}$	$64.93_{\pm 0.75}$	$64.16_{\pm 1.05}$	$80.61_{\pm 0.49}$	$84.84_{\pm 0.69}$	$88.32_{\pm 0.24}$	78.70
Classic	SenBERT-66M	$79.61_{\pm 1.40}$	$74.06_{\pm 1.26}$	$94.47_{\pm 0.33}$	$72.66_{\pm0.24}$	$86.51_{\pm0.86}$	$60.11_{\pm 0.93}$	$58.70_{\pm 0.54}$	$85.99_{\pm0.58}$	$77.72_{\pm 0.35}$	$74.22_{\pm 0.21}$	76.40
	RoBERTa-355M	$83.17_{\pm 0.84}$	$75.90_{\pm 1.69}$	$94.84_{\pm0.06}$	$74.12_{\pm 0.12}$	$87.47_{\pm 0.83}$	$63.75_{\pm 1.13}$	$60.61_{\pm 0.24}$	$86.65_{\pm0.38}$		$75.76_{\pm0.30}$	78.17
	GLEM	$86.81_{\pm 1.19}$	$73.24_{\pm 1.55}$	$93.98_{\pm0.32}$	$73.55_{\pm 0.22}$	$79.81_{\pm 0.45}$	$67.39_{\pm 1.73}$	$53.11_{\pm 2.96}$	$83.98_{\pm 0.97}$	$78.16_{\pm 0.45}$	$81.63_{\pm 0.46}$	77.17
El	GCN _{LLMEmb}	88.15 _{±1.79}	$76.45_{\pm 1.19}$	88.38 _{±0.68}	$74.39_{\pm 0.31}$	84.78 _{±0.86}	68.27 _{±0.45}	$70.65_{\pm 0.75}$	$84.23_{\pm 0.20}$	$86.07_{\pm0.20}$	89.52 _{±0.31}	81.09
Encoder	ENGINE	$87.00_{\pm 1.60}$	$75.82_{\pm 1.52}$	$90.08_{\pm 0.16}$	$74.69_{\pm 0.36}$	$85.44_{\pm0.53}$	$68.87_{\pm 0.25}$	$71.21_{\pm 0.77}$	$84.09_{\pm0.09}$	$86.98_{\pm 0.06}$	$89.05_{\pm 0.13}$	81.32
Explainer	TAPE	$88.05_{\pm 1.76}$	$76.45_{\pm 1.60}$	$93.00_{\pm 0.13}$	$74.96_{\pm 0.14}$	$87.11_{\pm 0.66}$	$68.11_{\pm 0.54}$	$66.22_{\pm 0.83}$	$85.95_{\pm 0.59}$	$87.72_{\pm0.28}$	$90.46_{\pm0.18}$	81.80
	LLM _{IT}	71.93 _{±1.47}	$60.97_{\pm 3.97}$	$94.16_{\pm0.19}$	76.08	80.61 _{±0.47}	44.20 _{±3.06}	58.30 _{±0.48}	$84.80_{\pm0.13}$	$78.27_{\pm 0.54}$	$74.51_{\pm 0.53}$	72.38
Predictor	GraphGPT	$82.29_{\pm 0.26}$	$74.67_{\pm 1.15}$	$93.54_{\pm 0.22}$	$75.15_{\pm0.14}$	$82.54_{\pm0.23}$	$67.00_{\pm 1.22}$	$60.72_{\pm 1.47}$	$85.38_{\pm 0.72}$	$84.46_{\pm 0.36}$	$86.78_{\pm 1.14}$	79.25
	LLaGA	$87.55_{\pm 1.15}$	$76.73_{\pm 1.70}$	$90.28_{\pm 0.91}$	$74.49_{\pm 0.23}$	$84.03_{\pm 1.10}$	$69.16_{\pm 0.72}$	$71.06_{\pm0.38}$	$85.56_{\pm0.30}$	$87.62_{\pm0.30}$	$90.41_{\pm 0.12}$	81.69

EncoderA robust choice

Explainer
Suitable for graphs
with labels heavily
depend on text

PredictorRequire rich
supervision

• Zero-shot

Type & LLM	Method	Cor	a (82.52)	Wiki	CS (68.67)	Instagi	ram (63.35)	Phot	to (78.50)	Avg.	
Type & LLM	Method	Acc	Macro-F1	Acc	Macro-F1	Acc	Macro-F1	Acc	Macro-F1	Acc	Macro-F1
	Direct	68.08	69.25	68.59	63.21	44.53	42.77	63.99	61.09	61.30	59.08
	CoT	68.89	69.86	70.75	66.23	47.87	47.57	61.61	60.62	62.28	61.07
LLM	ToT	68.29	69.13	70.78	65.69	44.16	42.68	60.84	59.16	61.02	59.16
GPT-4o	ReAct	68.21	69.28	69.45	66.03	44.49	43.16	63.63	60.82	61.44	59.82
	w. Neighbor	70.30	71.44	69.69	64.51	42.42	39.79	69.93	68.55	63.09	61.07
	w. Summary	71.40	72.13	70.90	65.42	45.02	44.62	72.63	70.84	64.99	63.25
	Direct	62.64	63.02	56.77	53.04	37.58	29.70	41.23	44.26	49.56	47.50
	CoT	62.04	62.61	58.88	56.00	42.00	39.06	44.22	47.13	51.78	51.20
LLM	ToT	34.06	33.30	40.35	41.15	45.33	45.27	31.31	34.00	37.76	38.43
LLaMA-8B	ReAct	36.55	38.04	22.40	25.76	44.67	44.42	27.03	28.96	32.66	34.30
	w. Neighbor	64.55	64.41	59.43	54.16	36.98	28.32	45.49	50.44	51.61	49.33
	w. Summary	64.69	64.62	62.69	56.40	37.59	30.91	48.11	52.20	53.27	51.03
	ZeroG	62.55	57.56	62.71	57.87	50.71	50.43	46.27	51.52	55.56	54.35
GFM	LLM_{IT}	52.58	51.89	60.83	53.59	41.58	26.26	49.23	44.85	51.06	44.15
	LLaGA	18.82	8.49	8.20	8.29	47.93	47.70	39.18	4.71	28.53	17.30

GFMs can outperform open-source LLMs but still fall short of strong LLMs like GPT-40

• LLM-as-Encoder vs. LM-as-Encoder

Madeal	E		Semi-su	pervised		Supervised					
Method	Encoder	Cornell	Texas	Wisconsin	Washington	Cornell	Texas	Wisconsin	Washington		
Homophi	ly Ratio (%)	11.55	6.69	16.27	17.07	11.55	6.69	16.27	17.07		
MLP	SenBERT RoBERTa Qwen-3B Mistral-7B	$\begin{array}{c} 50.59_{\pm 3.14} \\ 59.08_{\pm 2.57} \\ 57.78_{\pm 3.24} \\ \textbf{59.87}_{\pm 6.72} \end{array}$	$56.67_{\pm 2.15} \\ 67.47_{\pm 1.29} \\ 76.27_{\pm 1.61} \\ \textbf{76.27}_{\pm 1.08}$	$71.98_{\pm 1.59} \\ 73.87_{\pm 1.62} \\ 82.36_{\pm 1.62} \\ \textbf{83.30}_{\pm 1.42}$	$63.26_{\pm 2.89} \\ 65.43_{\pm 3.44} \\ \textbf{75.11}_{\pm 1.92} \\ 74.24_{\pm 0.88}$	$ \begin{array}{c c} 66.15_{\pm 1.92} \\ 66.67_{\pm 8.88} \\ 77.95_{\pm 4.76} \\ \hline \textbf{78.46}_{\pm 4.17} \end{array} $	$76.32_{\pm 3.72} \\ 74.21_{\pm 6.09} \\ 88.95_{\pm 3.07} \\ \textbf{90.53}_{\pm 3.16}$	$81.51_{\pm 7.00} \\ 80.00_{\pm 9.88} \\ 88.68_{\pm 6.64} \\ \textbf{89.43}_{\pm 5.15}$	$70.44_{\pm 8.65}$ $76.96_{\pm 7.48}$ $83.48_{\pm 1.74}$ $83.91_{\pm 5.60}$		
GCN	SenBERT RoBERTa Qwen-3B Mistral-7B	$\begin{array}{c} 46.80_{\pm 2.13} \\ 47.06_{\pm 2.19} \\ 53.59_{\pm 2.07} \\ \textbf{54.64}_{\pm 1.52} \end{array}$	$54.93_{\pm 0.68}$ $55.20_{\pm 2.78}$ $56.80_{\pm 4.29}$ $58.67_{\pm 3.60}$	$58.30_{\pm 2.56}$ $54.91_{\pm 3.40}$ $63.02_{\pm 2.16}$ $62.08_{\pm 2.61}$	$52.61_{\pm 1.35}$ $54.89_{\pm 1.50}$ $64.56_{\pm 4.06}$ $61.52_{\pm 3.61}$	$\begin{array}{c} 50.77_{\pm 10.18} \\ 51.79_{\pm 7.68} \\ 58.46_{\pm 10.56} \\ \textbf{59.49}_{\pm \textbf{6.96}} \end{array}$	$59.47_{\pm 5.16}$ $58.42_{\pm 7.33}$ $64.74_{\pm 7.37}$ 65.79 $_{\pm 6.66}$	$61.13_{\pm 8.65}$ $59.24_{\pm 8.82}$ $65.28_{\pm 6.82}$ $64.90_{\pm 5.67}$	$61.30_{\pm 1.62}$ $61.31_{\pm 5.39}$ $67.83_{\pm 3.74}$ $66.96_{\pm 4.84}$		
SAGE	SenBERT RoBERTa Qwen-3B Mistral-7B	$\begin{array}{c c} 52.55_{\pm 1.58} \\ 55.55_{\pm 3.44} \\ \hline \textbf{57.13}_{\pm \textbf{2.29}} \\ 56.86_{\pm 1.37} \end{array}$	$61.73_{\pm 1.37}$ $64.26_{\pm 6.26}$ $78.53_{\pm 1.76}$ $76.53_{\pm 2.40}$	$70.47_{\pm 1.75}$ $73.59_{\pm 2.72}$ $83.21_{\pm 1.39}$ $83.96_{\pm 1.55}$	$65.54_{\pm 2.44} \\ 66.08_{\pm 1.60} \\ 72.18_{\pm 3.66} \\ \textbf{73.91}_{\pm \textbf{0.97}}$	$ \begin{array}{c c} 68.72_{\pm 4.97} \\ 70.26_{\pm 8.37} \\ 74.87_{\pm 2.99} \\ \hline \textbf{77.44}_{\pm \textbf{2.99}} \end{array} $	$80.00_{\pm 5.91} \ 80.53_{\pm 2.68} \ 89.47_{\pm 1.67} \ \textbf{91.05}_{\pm \textbf{2.69}}$	$83.02_{\pm 6.31} \\ 81.89_{\pm 7.42} \\ \textbf{91.32}_{\pm \textbf{2.82}} \\ 89.44_{\pm 4.24}$	$76.96_{\pm 4.88}$ $74.35_{\pm 7.95}$ $83.48_{\pm 3.25}$ $81.74_{\pm 4.48}$		
H ₂ GCN	SenBERT RoBERTa Qwen-3B Mistral-7B	$\begin{array}{c} 56.34_{\pm 1.67} \\ 60.00_{\pm 3.54} \\ \textbf{61.57}_{\pm 3.89} \\ 59.22_{\pm 4.54} \end{array}$	$66.67_{\pm 2.95}$ $68.13_{\pm 2.93}$ $80.13_{\pm 6.45}$ $72.93_{\pm 8.21}$	$73.40_{\pm 1.68} \\ 75.66_{\pm 2.12} \\ \textbf{84.53}_{\pm \textbf{0.70}} \\ 81.89_{\pm 1.51}$	$70.55_{\pm 4.95}$ $71.52_{\pm 1.22}$ $74.67_{\pm 1.77}$ $68.59_{\pm 4.46}$	$ \begin{array}{c c} 73.85_{\pm 7.14} \\ 74.87_{\pm 7.68} \\ \hline \textbf{76.41}_{\pm \textbf{2.99}} \\ 75.89_{\pm 3.84} \end{array} $	$84.21_{\pm 4.40} \\ 83.16_{\pm 6.14} \\ \textbf{92.11}_{\pm 2.88} \\ 89.47_{\pm 3.72}$	$86.42_{\pm 6.01}$ $84.53_{\pm 9.04}$ $89.81_{\pm 3.29}$ $89.43_{\pm 5.42}$	$77.83_{\pm 7.20}$ $79.13_{\pm 5.43}$ $85.22_{\pm 3.99}$ $86.09_{\pm 3.25}$		

LLM-as-Encoder significantly outperforms LMs in less informative graphs, e.g., heterophilic ones

Contribution Summary

A Testbed

- LLMNodeBed, a PyG-based testbed including 14 datasets, 8 LLM-based algorithms, 8 classic algorithms, and 3 learning configurations
- Comprehensive Experiments
 - Training and evaluating over 2,700 models, we analyze how learning paradigm, homophily, language model type and size, and prompt design impact the performace
- Insights and Tips
 - Our work provides intuitive explanations, practical tips, and insights about the strengths and limitations of each algorithm category.

Resources

- Paper: https://arxiv.org/pdf/2502.00829
- Code: https://github.com/WxxShirley/LLMNodeBed
- Dataset: https://huggingface.co/datasets/xxwu/LLMNodeBed
- Chinese Blog: https://zhuanlan.zhihu.com/p/1913536056717967976

Thank you for your attention!