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Motivation

Table: Observed Dataset

V1 . . . X . . . Y . . . Vm−1 Vm

1 v1,1 ... x1 ... y1 ... v1,m−1 v1,m
2 v2,1 ... x2 ... y2 ... v2,m−1 v2,m
... ... ... ... ... ... ... ... ...

n vn,1 ... xn ... yn ... vn,m−1 vn,m

X Y

Is X an ancestor of Y?

?

Problem
How to identify the causal relationship between X and Y in the presence of latent
variables?

Learning global causal structure? (FCI, RFCI, etc.)

The complexity of these methods grows exponentially
with respect to the number of all observed variables.
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Goal

Table: Observed Dataset

V1 . . . X . . . Y . . . Vm−1 Vm

1 v1,1 ... x1 ... y1 ... v1,m−1 v1,m
2 v2,1 ... x2 ... y2 ... v2,m−1 v2,m
... ... ... ... ... ... ... ... ...

n vn,1 ... xn ... yn ... vn,m−1 vn,m

X Y

Is X an ancestor of Y?

?

Task: Under the standard assumptions of the causal Markov condition, the causal Faith-
fulness condition, and no selection bias, our objective is to

Characterize the local graphical features of different types of causal relationships
between a pair of variables X and Y.

Develop a fully local algorithm to determine the causal relationship between X
and Y.
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Preliminaries

Given a Markov equivalent class of MAGs, there are three possible types of causal
relationships (Zhang 2006):

A variable X is an invariant ancestor of a variable Y if there is a directed path from
X to Y in every equivalent MAG.

A variable X is an invariant non-ancestor of a variable Y if there is no directed path
from X to Y in any equivalent MAG.

A variable X is a possible ancestor of variable Y if X is neither an invariant ancestor
nor an invariant non-ancestor of Y.
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Preliminaries

Markov Blanket

The Markov blanket of a variable X is the smallest set conditioned on which all other
variables are statistically independent of X.

Graphically, in a DAG D, this is the set of parents, children, and children’s parents of
vertex X, denoted by MB(X,D).

In a MAG, the Markov blanket of a vertex X, noted as MB(X,M), comprises: (1)
vertices adjacent to X, and (2) vertices reachable from X via collider paths despite
being non-adjacent.
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Figure: The illustrative example for MB, where X is the target of interest and the blue vertices
belong to MB(X,M).
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How can we characterise the local features of causal relationships?

The well-known local Markov property for DAGs states that, given a target variable X,
it is independent of its non-descendants conditioned on a particular set of variables, i.e. ,
its parents. Formally,

X ⊥⊥ {V \ De(X)} | Pa(X).

However, the parents of the target variable may not be observed, in a system where
latent variables may exist.
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Define a local Markov property for MAGs

Definition 1 (Arrow-Collider Path)

In a PAG or a MAG, a path π = ⟨V0, . . . ,Vn⟩ is called an arrow-collider path from V0 to
Vn if every non-endpoint vertex is a collider on π, and the edge between V0 and V1

points into V0, i.e. , V0 ↔ V1 · · · ←∗Vn. If n = 1, π simplifies to V0 ←∗V1.

Building on Definition 1, we define the particular set graphically in Definition 2.

Definition 2 (Augmented Parent Set)

Let G be a PAG or a MAG. The augmented parent set of a vertex X, denoted as
Pa*(X,G), is defined as follows: for any vertex V ∈ O, V ∈ Pa*(X,G) if and only if there
exists an arrow-collider path π from X to V such that:

(1) in a MAG, X is a non-ancestor of every vertex on π, including V.

(2) in a PAG, X is an invariant non-ancestor of all vertices on π, including V.
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Local Markov Property for MAGs

Definition 1 (Local Markov Property for MAGs)

Let M be the MAG over O, and let Pre(X,M) denote the pre-treatment vertices of X in
M, i.e. , the vertices for which X is not an ancestor. The local Markov property for the
MAG states that for every variable X ∈ O, the following property holds:

X ⊥⊥ Pre(X,M) \ Pa*(X,M) | Pa*(X,M) (1)

A

B C

D E F

G

H X

Figure: A MAG

De(X,M) = {D,E,F,B},

Pre(X,M) = {A,C,G,H},

Pa*(X,M) = {A,G}

The local Markov property for X
is:

X ⊥⊥ {C,H} | {A,G}
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Local Characterization: Invariant non-Ancestor

Theorem 1

Let P be the PAG over O. For any pair of vertices (X,Y) in P, X is an invariant

non-ancestor of Y if and only if X ⊥⊥ Y | Pa∗(X,P).

A

B Y

D E F

G

H X

Figure: A PAG

Pa*(X,P) = {A,G},

X ⊥⊥ Y | {A,G}
Consequently, X is an invariant
non-ancestor of Y.

Intuitively, given a PAG P, Pa*(X,P) blocks all non-causal paths from X to Y in P.
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Local Characterization: Invariant Ancestor

Definition 3 (Explicit Invariant Ancestor)

Given a PAG P, a vertex X is an explicit invariant ancestor of another vertex Y if a
common directed path exists from X to Y in every MAG within [P].

Definition 4 (Implicit Invariant Ancestor)

Given a PAG P, a vertex X is an implicit invariant ancestor of another vertex Y if X is an
invariant ancestor of Y, but there is no directed path from X to Y common to every
MAG within [P].

Remark 1
We define X as an invariant ancestor of Y if there exists a directed path from X to Y in
every MAG in [P]. If these directed paths are identical across all MAGs in [P], the
invariant ancestor relation is explicit; otherwise, it is implicit.
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Explicit/Implicit Invariant Ancestor Examples
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Explicit invariant

ancestor: Let X = D and
Y = E. A common
directed path D→ E is
present in every graph
within Figures (c-g),
thereby establishing D as
an explicit invariant
ancestor of E.

Implicit invariant ancestor: Let X = A and Y = D. There is a directed path from A
to D that can be observed in every graph within Figures (c-g), but there is no
common directed path from A to D in these graphs. Therefore, A is considered an
implicit invariant ancestor of D.
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Local Characterization: Explicit Invariant Ancestor

Definition 5 (Circle-Collider Path)

In a PAG, a path π = ⟨V0, . . . ,Vn⟩ is called a circle-collider path from V0 to Vn if every
non-endpoint vertex is a collider on π, and the edge between V0 and V1 is undirected
relative to V0, i.e. , V0◦→ V1 · · · ←∗Vn. If n = 1, π simplifies to V0 ◦−∗ V1.

Definition 6 (Augmented Non-directed Neighbor Set)

Let P be a PAG, the augmented non-directed neighbor set of a vertex X, denoted as
Ne∗(X,P), is defined as follows: For any vertex V ∈ O, V ∈ Ne∗(X,P) if and only if
there exists a circle-collider path π = ⟨X = V0,V1, . . . ,Vn = V⟩ from X to V such that
for every 2 ≤ i ≤ n, X is an invariant non-ancestor of Vi

a.
aWhen n = 1, the condition becomes redundant and may be omitted.
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Local Characterization: Explicit Invariant Ancestor

Theorem 2

Let P be the PAG over O. For any pair of vertices (X,Y) in P, X is an explicit invariant

ancestor of Y if and only if X ⊥̸⊥ Y | Pa*(X,P) ∪Ne*(X,P).

A

Y C

D E F

G

H X

Figure: A PAG

Pa*(X,P) = {A,G},

Ne*(X,P) = ∅,

X ⊥̸⊥ Y | {A,G}

X is an explicit invariant ances-
tor of Y.

Intuitively, given a PAG P, Ne*(X,P) blocks all partially directed paths(except directed
paths) from X to Y in P.

Zheng Li (BTBU) LocICR June 26, 2025 14 / 24



Local Characterization: Implicit Invariant Ancestor

Definition 7

Let P be a PAG and let M represent the set of maximal cliques of the induced subgraph
of P over PossCh(X,P) ∪NondNe(X,P). The set of augmented non-directed neighbor
of a vertex X relative to a maximal clique M ∈ M, denoted as Ne∗(XM,P). For any
vertex V ∈ O, V ∈ Ne∗(XM,P) if and only if there exists a circle-collider path
π = ⟨X = V0,V1, . . . ,Vn = V⟩ from X to V such that (1) for every 2 ≤ i ≤ n, X is an
invariant non-ancestor of Vi and (2) V1 ∈M.
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Local Characterization: Implicit Invariant Ancestor

Theorem 3

Let P be the PAG over O. For any pair of vertices (X,Y) in P, X is an implicit invariant

ancestor of Y if and only if (1) X ⊥⊥ Y | Pa∗(X,P) ∪Ne∗(X,P), but (2)
X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(XM,P) for every M ∈ M.

A

B C

Y E F

X

H J

Figure: A PAG

Pa*(X,P) = ∅,

Ne*(X,P) = {A, J,H},

(1)X ⊥⊥ Y | {A, J,H}
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Figure: A PAG

PossCh(X,P) ∪NondNe(X,P) = {H, J},

M = {M1 = {H},M2 = {J}}

Ne*(XM1 ,P) = {H},

Ne*(XM2 ,P) = {A, J},

(2)X ⊥̸⊥ Y | {H},X ⊥̸⊥ Y | {A, J}
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Local Characterization: Implicit Invariant Ancestor
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Figure: A PAG

X is an implicit invariant ancestor of Y.

Intuitively, similar to the role of Ne*(X,P) in
P, Ne*(XM,P) can block all partially directed
paths (excluding directed paths) from X to Y
that pass through M in P.
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Local Characterization: Invariant Ancestor and Possible Ancestor

Corollary 1

Let P be the PAG over O, and let M denote the set of maximal cliques of the induced
subgraph of P over PossCh(X,P) ∪NondNe(X,P). For any pair of vertices (X,Y) in P,
X is an invariant ancestor of Y if and only if X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(X,P) or
X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(XM,P) for every M ∈ M.

Theorem 4

Let P be the PAG over O. For any pair of vertices (X,Y) in P, X is a possible ancestor

of Y if and only if neither Theorem 1 nor Corollary 1 applies.
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Locally Learning Conditional Sets

To find the conditional sets Pa*(X,P), Ne*(X,P), and Ne*(XM,P) for every maximal
clique M ∈ M, we need to answer the following two questions:

How to discover which vertices in MB(X) are connected to X via arrow-collider paths
or circle-collider paths?

This involves locally learning the induced subgraph of the global PAG over MB+(X),
i.e. , PMB+(X).

How to determine whether X is an invariant non-ancestor of the vertices on these
paths?

This requires identifying all vertices in MB(X) for which X is an invariant non-
ancestor, denoted as PreMB(X).
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Experimental Results on Benchmark Network Structures
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(a) Performance Comparisons on MILDEW.Net (b) Performance Comparisons on ALARM.Net
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Figure: Performance of eight algorithms on four benchmark networks
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Application to General Social Survey Data

The dataset we used contains six observed variables, and 1380 samples (O. D. Duncan,
Featherman, and B. Duncan 1972).

We first selected the father’s occupation (X) and the son’s education (Y) as the
target variable pair, connected by a direct edge. Our method identifies the father’s
occupation as an invariant ancestor of the son’s education.

Next, we selected father’s occupation (X) and son’s income (Y), as well as father’s
education (X) and son’s income (Y) as the target variable pairs. In both cases, X
and Y are connected by directed paths. Our method identifies both father’s
occupation and father’s education as invariant ancestors of the son’s income.

Finally, for son’s income (X) and number of siblings (Y), which are neither
connected by a direct edge nor a directed path from X to Y. Our method finds the
son’s income as an invariant non-ancestor of the number of siblings.

Zheng Li (BTBU) LocICR June 26, 2025 20 / 24



Application to Gene Expression Data

The dataset we used contains 33 genes, and 118 samples (Wille et al. 2004).

We first selected DXR (X) and MCT (Y), as well as HMGS (X) and HMGR1 (Y), as
the target pairs, both of which are connected by a direct edge. Our method
identifies DXR as an invariant ancestor of MCT, and similarly, HMGS as an invariant
ancestor of HMGR1.

Next, we selected AACT1 (X) and FPPS1 (Y), as well as DXPS3 (X) and CMK (Y),
where each pair is connected by a directed path from X to Y. Our method identifies
AACT1 as an invariant ancestor of FPPS1, and likewise, DXPS3 as an invariant
ancestor of CMK.

Finally, we considered PPDS1 (X) and DXPS1 (Y), as well as DXPS1 (X) and
DXPS3 (Y), neither of which is connected by a direct edge or a directed path from
X to Y. Our method finds that PPDS1 is an invariant non-ancestor of DXPS1, and
similarly, DXPS1 is an invariant non-ancestor of DXPS3.
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Conclusion and Future Work

Conclusion: We addressed the problem of locally learning causal relations from
observational data without assuming causal sufficiency.

We provided sufficient and necessary local characterizations for identifying invariant
ancestors, invariant non-ancestors, and possible ancestors.

We introduced LocICR, a novel algorithm for local causal discovery. We proved that
LocICR is complete, matching the accuracy of existing global methods.

Future Work:

How can background knowledge be utilized to further aid in locally identifying the
causal relationships in the presence of latent variables?

How does local causal discovery from multi-environment data work?
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Thank You!
Questions and Discussion


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