

SAH-Drive: A Scenario-Aware Hybrid Planner for Closed-Loop Vehicle Trajectory Generation

Yuqi Fan, Zhiyong Cui, Zhenning Li, Yilong Ren, Haiyang Yu Beihang University, University of Macau

> 1CML 2025 202507

Motivation

Reliable planning is crucial for achieving autonomous driving. Trajectory planning primarily involves two types of algorithms: learning-based algorithms and rule-based algorithms.

Characteristic

Rule-based algorithm:

- High interpretability
- Robust within defined scenarios
- Computationally efficient
- Poor generalization
- Limited scenario coverage

Learning-based algorithm:

- Strong generalization ability
- Capable of modeling complex behaviors
- Low interpretability
- High computational cost
- Strong dependency on large-scale data

Applicable to

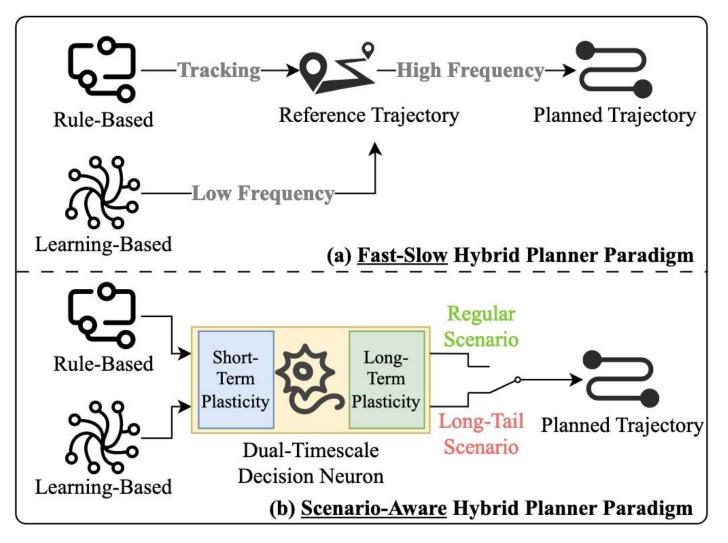
- simple, regular scenarios
- the majority of the driving process

- complex long-tail scenarios
- Rarely occur during driving

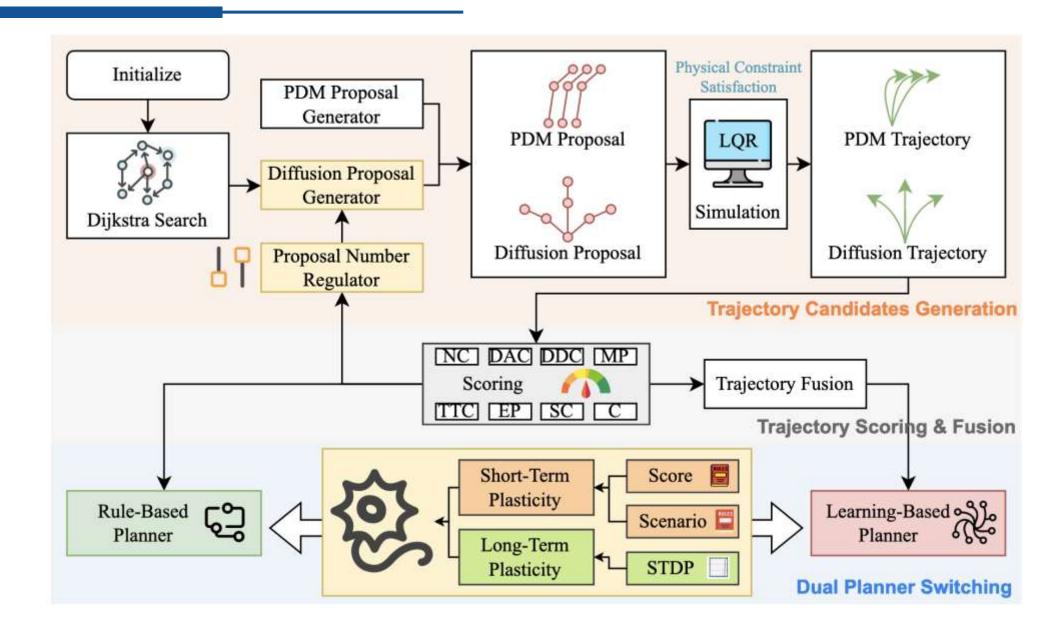
Problem

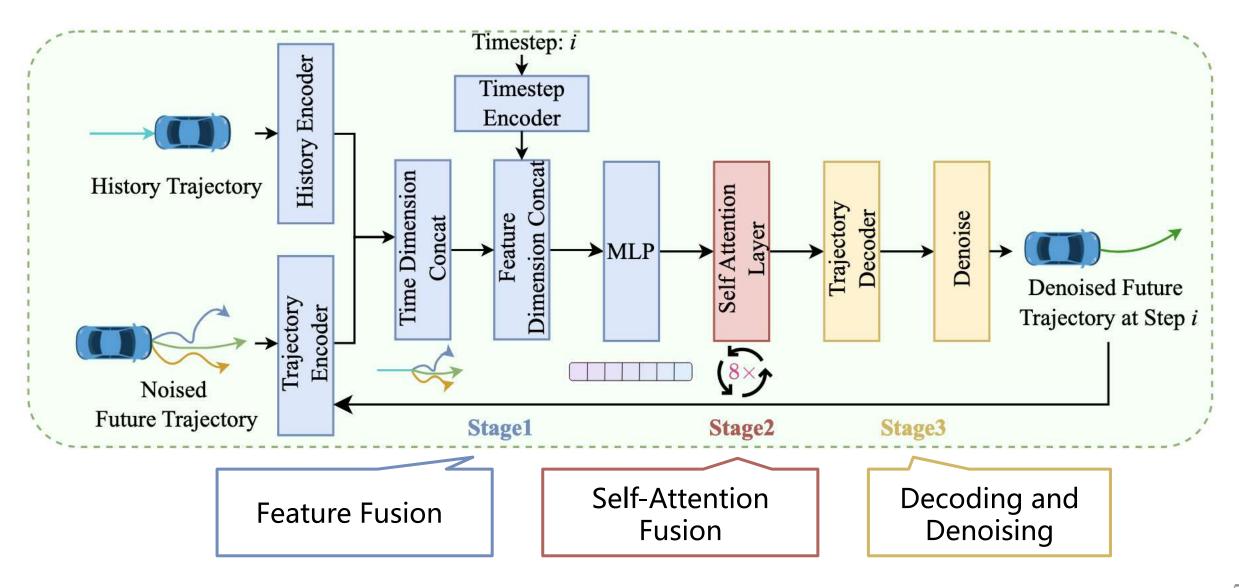
How to combine the advantages of rule-based and learning-based planners based on their characteristics and applicability?

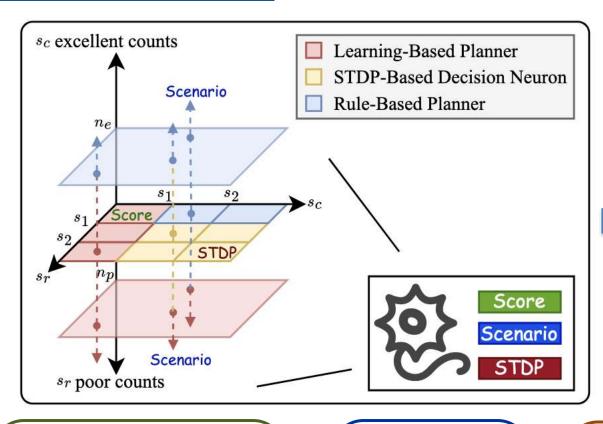
Introduction



- Traditional fast-slow hybrid planner paradigm ignores the scenario differences, and the learning-based planner serves merely as guidance.
- Human driving is effortless in regular situations but becomes cognitively demanding and multimodal in complex long-tail scenarios.
- P Scenario-aware hybrid planner paradigm mimics human neural mechanisms by comprehensively combining both types of planners, enhancing generalization for long-tail scenarios while maintaining high efficiency in regular scenarios.







Algorithm 1 Planner Selection Using Dual-Timescale Decision Neuron

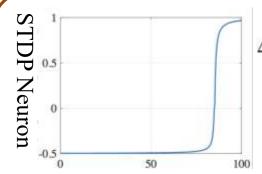
Require: Rule-based planner score s_c , Learning-based planner score s_r

Ensure: Selected planner

- 1: Update weights w_r and w_c using Equation (5)
- 2: Update consecutive counts n_e and n_p
- 3: category \leftarrow decision_space (s_r, s_c, n_e, n_p)
- 4: if category = score then
- 5: planner \leftarrow score_rule (s_r, s_c)
- 6: else if category = scenario then
- 7: planner \leftarrow scenario_rule (n_e, n_p)
- 8: else
- 9: planner \leftarrow STDP_neuron (w_r, w_c)
- 10: end if
- 11: return planner

Score Rule: Set thresholds to classify trajectories into three categories and directly assign a planner based on the category.

Scenario Rule: Determine planner type based on its consecutive count.



 $\Delta w = \begin{cases} A^{+} \cdot e^{-\frac{1}{(s_{\text{pre}} - s_{\text{post}})\tau^{+}}} & \text{if } s_{\text{post}} < s_{\text{pre}} & \text{(LTP)} \\ -A^{-} \cdot e^{\frac{1}{(s_{\text{pre}} - s_{\text{post}})\tau^{-}}} & \text{if } s_{\text{pre}} < s_{\text{post}} & \text{(LTD)} \end{cases}$

Determine the planner based on connection strength.

□ Proposal Number Regulator

To improve planning efficiency, we implemented a dynamic proposal number regulator that adaptively adjusts the number of diffusion proposals in real-time based on the highest diffusion trajectory score.

$$N' = \begin{cases} \frac{N}{2}, & s_{\text{diff}} > \tau, \\ 2N, & s_{\text{diff}} < \tau. \end{cases}$$

$$N' = \max(N_{\min}, \min(N', N_{\max}))$$

□ Trajectory Fusion for the Learning-Based Planner

To mitigate the risk of excessively aggressive diffusion trajectories, which could pose high driving risks to the ego vehicle, we propose to fuse the highest-scoring diffusion trajectory with the highest-scoring PDM trajectory.

$$p_{\text{fused}} = \frac{e^{\alpha(s_{\text{PDM}} - s_{\text{max}})} p_{\text{PDM}} + e^{\alpha(s_{\text{diff}} - s_{\text{max}})} p_{\text{diff}}}{e^{\alpha(s_{\text{PDM}} - s_{\text{max}})} + e^{\alpha(s_{\text{diff}} - s_{\text{max}})}}$$

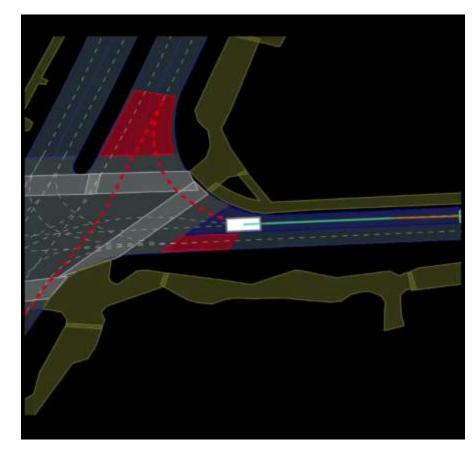
Experiment

	Planner	Type	interPlan	Constr.	Acc.	Jayw.	Nudge	Overt.	LTD	MTD	HTD
	PDM-Closed (CoRL 2023)	Rule	42	18	0	48	74	9	62	62	62
SOTA	STR2 (arxiv 2024)	Learning	46	1	1	1	1	1	1	7	1
	HybridLLMPlanner (IROS 2024)	Hybrid	53	27	20	48	93	28	81	48	80
	Diffusion-ES (CVPR 2024)	Learning	57	71	51	13	88	52	61	58	61
	PlanTF (ICRA 2024)	Learning	33	9	0	33	49	9	50	40	73
	Pluto (arxiv 2024)	Learning	48	54	9	56	82	17	47	47	68
	Diffusion Planner (ICLR 2025)	Learning	24	17	0	7	70	15	41	22	17
	SAH-Drive (Ours)	Hybrid	64	72	<u>44</u>	47	80	78	64	63	63
Suboptimal	Urban Driver (CoRL 2022)	Learning	4	0	0	0	0	0	0	29	0
	GameFormer (ICCV 2023)	Learning	11	0	0	48	0	0	0	20	21
	DTPP (ICRA 2024)	Learning	25	18	18	44	10	0	40	36	34
	IDM (Phys. Rev. E)	Rule	31	0	0	66	0	0	61	61	61

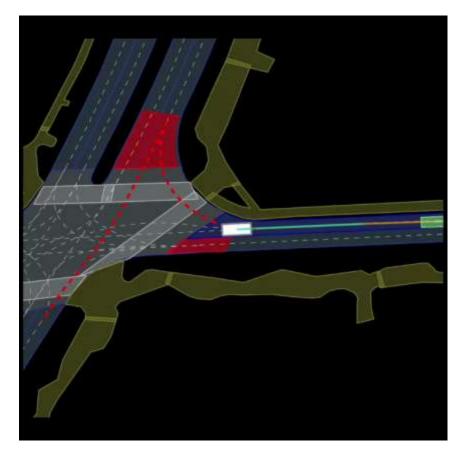
	Planner	Type	interPlan	Val14 (R)	Val14 (NR)	Test14-Random (R)	Test14-Random (NR)	Test14-Hard (R)	Test14-Hard (NR)
	PDM-Closed	Rule	42	92	93	91	90	75	65
	STR2	Learning	46	93	/	1	1	1	1
9	HybridLLMPlanner	Hybrid	53	1	1	1	1	1	1
₹	Diffusion-ES	Learning	57	92 77	1	1	1	77	77
SO	PlanTF	Learning	33	77	84	80	85	61	77 69
	Pluto	Learning	48	78	89	78	89	60	70
	DiffusionPlanner	Learning	24	83	90	83	89	69	75
	SAH-Drive	Hybrid	64	90	89	<u>87</u>	86	83	78
la!	UrbanDriver	Learning	4	50	69	67	52	49	50
Ē	GameFormer	Learning	11	75	80	82	84	67	68
por	DTPP	Learning	25	73	1	1	1	1	1
Su	IDM	Rule	31	77	75	74	70	62	56

Only trained on nuPlan mini

Experiment



SAH-Drive



PDM-Closed

Thakns for your listening!

project link: https://sah-drive-web.github.io/