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Problem Setup：Singular Perturbed Problems

Example: Allen-Cahn equation Example: Helmholtz equation Example: Burgers’ equation

Parameter 𝜺：influence the structure of the solution and the difficulty of training neural network solvers.



Problem Setup：Neural Networks for Solving PDEs

PINN[1] Loss

Solution approximation: Use Neural Network to approximate the solution:

Transform the problem into an optimization problem:

x𝑟: collocation points
x𝑏: boundary & initial points
𝑛res: # collocation points
𝑛bc: # boundary & initial points

𝐿res: PDE residual loss

𝐿bc: Boundary loss

[1] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686-707.



Motivations

𝜺 ↓ → Hard to train for small 𝜺

• Small 𝜀 leads to training challenges — why?

• Can we overcome this with a more robust training strategy?

Contributions

• We provide a theoretical explanation for why small ε leads to slow training convergence.

• We propose a training algorithm based on Homotopy Dynamics to efficiently solve singularly perturbed 

problems.

• We demonstrate the effectiveness of our method through both theoretical analysis and empirical results.

Learn Singularly Perturbed Solutions via Homotopy Dynamics, ICML 2025.



Why hard to train for small 𝜀? 
Neural Tangent Kernel farmwork: 

Theorem 1 (Effectiveness of Training via the Eigenvalue of the Kernel)

Training Speed is controlled by  𝜆𝑚𝑖𝑛(𝐾𝜀)



Example: Allen-Cahn equation Example: Helmholtz equation Example: Burgers’ equation

𝝀max(𝑫𝜺𝑫𝜺
𝑻) ↓,  Training speed ↓, training complexity ↑

Why hard to train for small 𝜀? 

𝜀 ↓



Proposed Method: Homotopy Dynamics
Neural network is trained from large 𝜺𝟎 (easy) to small 𝜺𝒏 (hard), guided by Homotopy Dynamics. 

Algorithm
Phase I

Phase II

𝜺 = 𝟎. 𝟏

𝜺 = 𝟎. 𝟎𝟑

𝜺 = 𝟎. 𝟎𝟏

Homotopy Evolution

Loss Landscape for problem: 𝓛𝜺 𝒖 = 𝒇(𝒖)

𝒅𝒖

𝒅𝜺
= −𝑯𝒖

−𝟏𝑯𝜺

𝑯 𝒖𝜺, 𝜺 = 𝓛𝜺 𝒖𝜺 − 𝒇(𝒖𝜺)

Wrong solution Ground truth solution

With 𝜺 ↓ Hard to train

Stuck in local minima 

Direct training for large 𝜺𝟎

Homotopy dynamics path tracking

𝐦𝐢𝐧 ||𝓛𝜺𝟎 𝒖𝜺𝟎 − 𝒇(𝒖) ||
𝑳𝟐
𝟐

𝒖𝜺𝟎

𝒖 𝜺 = 𝟎 = 𝒖𝜺𝟎



Proposed Method: Homotopy Dynamics



Experimental Results: 2D Allen-Cahn equations

• Homotopy:

Figure: Steady state solution of Allen-Cahn equation from 𝜀 = 1 → 0.05.



Experimental Results: High dimension Helmholtz equation

• Homotopy:

Table: Comparison of the relative 𝐿2 error achieved by the classical training and homotopy
dynamics for different values of ε in Helmholtz equation



Experimental Results: Operator learning Burgers’ equation

Figure: Steady state solution of Allen-Cahn equation from 𝜀 = 1 → 0.05.



Why Homotopy works?

Table: Minimum eigenvalue 𝜆𝑚𝑖𝑛(𝐾𝜀) under different initializations for 𝜀 = 0.01

Homotopy Dynamics based training can provide a better initialization for the problem. 



Theoretical Results

Theorem 2 (Convergence of Homotopy Dynamics)

Step size △ 𝜺𝒌

Initial error solved by original method for large 𝜺

Small step size △ 𝜺𝒌, and initial value for the initial error for solving large 𝜺𝟎



Learn Singularly Perturbed Solutions via Homotopy Dynamics, ICML 2025.

Conclusion

• We theoretically analyze the root cause of training difficulties under small ε.

• To overcome this challenge, we develop a Homotopy Dynamics-based training algorithm.

• Extensive theoretical and empirical results demonstrate the effectiveness of our method in 

solving singularly perturbed problems.
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