

Learn Singularly Perturbed Solutions via Homotopy Dynamics

Chuqi Chen¹, Yahong Yang², Yang Xiang^{1,3}, Wenrui Hao²

¹Hong Kong University of Science and Technology, ²Pennsylvania State University, ³ HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute

Problem Setup: Singular Perturbed Problems

$$\begin{cases} -\varepsilon^2 \Delta u(x) = f(u), & x \in \Omega \\ u(x) = g(x), & x \in \partial \Omega \end{cases}$$

Parameter ε : influence the structure of the solution and the difficulty of training neural network solvers.

Example: Allen-Cahn equation $\begin{cases} \varepsilon^2 u''(x) + u^3 - u = 0, & x \in [0, 1], \\ u(0) = -1, & u(1) = 1. \end{cases}$ Steady State Solutions for Different ε $\epsilon = 0.01$ 0.25 -0.25-0.50-0.75

Problem Setup: Neural Networks for Solving PDEs

$$\begin{cases} \mathcal{L}_{\varepsilon}u = f(u), & \text{in } \Omega, \\ \mathcal{B}u = g(x), & \text{on } \partial\Omega. \end{cases}$$

Solution approximation: Use Neural Network to approximate the solution:

$$u(\boldsymbol{x};\boldsymbol{\theta}) = \sum_{j=1}^{M} a_j \phi_j(\boldsymbol{x}) = \sum_{j=1}^{M} a_j (\boldsymbol{k}_j \cdot \boldsymbol{x} + b_j) = \sum_{j=1}^{M} a_j \sigma(\boldsymbol{w}_j \cdot \boldsymbol{x}).$$

Transform the problem into an optimization problem:

PINN_[1] Loss minimize
$$\theta \in \mathbb{R}^p$$

 X_r : collocation points

X_h: boundary & initial points

 n_{res} : # collocation points

 $n_{\rm hc}$: # boundary & initial points

$$\begin{array}{ll} \textbf{PINN}_{\text{[1]}} \textbf{Loss} & \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\text{minimize}} & L(\boldsymbol{\theta}) \coloneqq \underbrace{\frac{1}{2n_{\text{res}}} \sum_{i=1}^{n_{\text{res}}} \left(\mathcal{L}_{\varepsilon} u(\mathbf{x}_r^i; \boldsymbol{\theta}) - f(u(\mathbf{x}_r^i; \boldsymbol{\theta}))\right)^2}_{L_{\text{res}}} \\ & \underset{n_{\text{bc}}: \, \text{\# boundary \& initial points}}{\underbrace{\sum_{i=1}^{n_{\text{res}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_{\text{bc}}: \, \text{\# boundary \& initial points}} \\ & + \lambda \underbrace{\frac{1}{2n_{\text{bc}}} \sum_{i=1}^{n_{\text{bc}}} \left(\mathcal{B} u(\mathbf{x}_b^i; \boldsymbol{\theta}) - g(\mathbf{x}_b^i)\right)^2}_{L_$$

 $L_{
m bc}$: Boundary loss

Motivations

 $\varepsilon \downarrow \rightarrow$ Hard to train for small ε

- Small ε leads to training challenges why?
- Can we overcome this with a more robust training strategy?

Contributions

- We provide a theoretical explanation for why small ε leads to slow training convergence.
- We propose a training algorithm based on Homotopy Dynamics to efficiently solve singularly perturbed problems.
- We demonstrate the **effectiveness** of our method through both theoretical analysis and empirical results.

Why hard to train for small ε ?

Neural Tangent Kernel farmwork:

GD dynamic:

$$\frac{\mathrm{d} L(\boldsymbol{\theta})}{\mathrm{d} t} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \frac{\mathrm{d} \boldsymbol{\theta}}{\mathrm{d} t} = -\frac{1}{n^2} \boldsymbol{I} \cdot \boldsymbol{K}_{\varepsilon} \cdot \boldsymbol{I}^{\top}.$$

Hence, the kernel of the gradient descent update is given by

$$m{\mathcal{K}}_arepsilon := m{D}_arepsilon m{\mathcal{S}} m{\mathcal{S}}^ op m{D}_arepsilon^ op,$$

where D_{ε} depends on PDEs, and S depends on neural networks.

Theorem 1 (Effectiveness of Training via the Eigenvalue of the Kernel)

Suppose $\lambda_{min}(\mathbf{S}\mathbf{S}^{\top}) > 0$ and \mathbf{D}_{ε} is non-singular, and let $\varepsilon \geq 0$ be a constant. Then, we have $\lambda_{min}(\mathbf{K}_{\varepsilon}) > 0$, and there exists T > 0 such that

$$L(\boldsymbol{\theta}(t)) \leq L(\boldsymbol{\theta}(0)) \exp\left(-\frac{\lambda_{min}(\boldsymbol{K}_{\varepsilon})}{n}t\right)$$
 Training Speed is controlled by $\lambda_{min}(K_{\varepsilon})$

for all $t \in [0,T]$, where n is the number of sample points. Furthermore,

$$\lambda_{min}(oldsymbol{K}_arepsilon) \leq \lambda_{min}(oldsymbol{S}oldsymbol{S}^ op) oldsymbol{\lambda}_{max}(oldsymbol{D}_arepsilon^ op).$$

Why hard to train for small ε ?

$$\begin{cases} -\varepsilon^2 \Delta u + f(u) = 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases} \longrightarrow \mathbf{D}_{\varepsilon} = -\varepsilon^2 \Delta_{\text{dis}} + \text{diag}(f'(u(\mathbf{x}_1)), \dots, f'(u(\mathbf{x}_n))).$$

 $\varepsilon \downarrow \longrightarrow \lambda_{\max}(D_{\varepsilon}D_{\varepsilon}^T) \downarrow$, Training speed \downarrow , training complexity \uparrow

Example: Allen-Cahn equation

$$\begin{cases} \varepsilon^2 u''(x) + u^3 - u = 0, & x \in [0, 1], \\ u(0) = -1, & u(1) = 1. \end{cases}$$

Example: Helmholtz equation

$$\begin{cases} \varepsilon^2 u''(x) + u = 0, & x \in [-1, 1], \\ u(-1) = \sin(-\frac{1}{\varepsilon}), & u(1) = \sin(\frac{1}{\varepsilon}). \end{cases}$$

Example: Burgers' equation

$$\begin{cases} u_t + \left(\frac{u^2}{2}\right)_x - \varepsilon u_{xx} = \pi \sin(\pi x)\cos(\pi x), & x \in [0,1], \\ u(x,0) = u_0(x), u(0,t) = u(1,t) = 0. \end{cases}$$

Proposed Method: Homotopy Dynamics

Neural network is trained from large ε_0 (easy) to small ε_n (hard), guided by **Homotopy Dynamics**.

Proposed Method: Homotopy Dynamics

Goal:

Solve $\mathcal{L}_{arepsilon^*}u=f(u)$ with boundary conditions Obtain $u(x; heta(arepsilon^*))$

Phase II: Homotopy dynamics driven optimization

Strategy I Numerical solution via Forward Euler

Define homotopy
$$H(u,arepsilon)=\mathcal{L}_arepsilon u-f(u)$$
 = 0

$$arepsilon_k = [arepsilon_0, arepsilon_1, \ldots arepsilon_i, \ldots, arepsilon_n]$$

$$rac{dH}{darepsilon}(u(arepsilon),arepsilon)=0$$

Idea: Find $u(x;\theta(arepsilon))$ to make Hpprox 0 for all $arepsilon\in [arepsilon_n,arepsilon_0]$.

Strategy II Optimization using Homotopy Loss

Experimental Results: 2D Allen-Cahn equations

• Homotopy: For $s: 1 \to 0$, $\varepsilon(s)$ is from 1 to 0.05, u_0 is the solution for $\varepsilon = 1$,

$$H(u,s,\varepsilon) = (1-s)\left(\varepsilon(s)^2\Delta u - u(u^2-1)\right) + s(u-u_0),$$

$$\begin{cases} u_t = \mathbf{1} \cdot \Delta u - u^3 + u, x \in [-1, 1]^2 \\ u(x, t) = 0, x \in \partial [-1, 1]^2 \\ u(x, 0) = -\sin \pi x_1 \sin \pi x_2, \end{cases} \implies \begin{cases} u_t = \mathbf{0.0025} \cdot \Delta u - u^3 + u, x \in [-1, 1]^2 \\ u(x, t) = 0, x \in \partial [-1, 1]^2 \\ u(x, 0) = -\sin \pi x_1 \sin \pi x_2, x \in [-1, 1]^2 \end{cases}$$

Figure: Steady state solution of Allen-Cahn equation from $\varepsilon = 1 \rightarrow 0.05$.

Experimental Results: High dimension Helmholtz equation

Homotopy:

For $\varepsilon: 1 \to 0.02$, u_0 is the solution for $\varepsilon = 1$,

$$H(u,\varepsilon)=\varepsilon^2\Delta u+\frac{1}{d}u.$$

For high-dimensional Helmholtz equation:

$$\left\{egin{aligned} arepsilon^2 \Delta u + rac{1}{d} u = 0, & \mathbf{x} \in \Omega, \ u = \mathbf{g}, & \mathbf{x} \in \partial \Omega, \end{aligned}
ight.$$

where $\Omega = [-1, 1]^d$, which admit the exact solution

$$u(\mathbf{x}) = \sin\left(\frac{1}{d}\sum_{i=1}^{d}\frac{1}{\varepsilon}x_i\right).$$

Dimension $d = 20$	$\varepsilon = 1/2$	arepsilon=1/20	arepsilon=1/50
Classical Training	1.23e-3	7.21e-2	9.98e-1
Homotopy dynamics	5.86e-4	5.00e-4	5.89e-4

Table: Comparison of the relative L^2 error achieved by the classical training and homotopy dynamics for different values of ε in Helmholtz equation

Experimental Results: Operator learning Burgers' equation

• **Homotopy:** For $s: 1 \to 0$, $\varepsilon(s)$ is from 1 to 0.05, u_0 is the solution for $\varepsilon = 1$,

$$H(u, s, \varepsilon) = (1 - s) \left(\left(\frac{u^2}{2} \right) - \varepsilon(s) u_{xx} - \pi \sin(\pi x) \cos(\pi x) \right) + s(u - u_0),$$

 $\varepsilon(s)$ can be set to

$$\varepsilon(s) = \begin{cases} s, & s \in [0.05, 1], \\ 0.05, & s \in [0, 0.05]. \end{cases}$$

Figure: Steady state solution of Allen-Cahn equation from $\varepsilon=1\to0.05$.

Why Homotopy works?

Homotopy Dynamics based training can provide a better initialization for the problem.

Better initialization for problem

$$\begin{cases} 1^{2} \cdot u''(x) + u^{3} - u = 0, \\ u(0) = -1, \quad u(1) = 1. \end{cases} \implies \begin{cases} 0.01^{2} \cdot u''(x) + u^{3} - u = 0, \quad x \in [0, 1], \\ u(0) = -1, \quad u(1) = 1. \end{cases}$$

$$L(\theta(t)) \leq L(\theta(0)) \exp\left(-rac{\lambda_{\mathsf{min}}(oldsymbol{\mathcal{K}}_{arepsilon})}{n}t
ight), oldsymbol{\mathcal{K}}_{arepsilon} = oldsymbol{D}_{arepsilon}^{\mathsf{T}}oldsymbol{D}_{arepsilon}^{\mathsf{T}}.$$

Initialization	Xavier	Hom $\varepsilon = 0.1$	Hom $\varepsilon = 0.05$	Hom $\varepsilon = 0.03$	Hom $\varepsilon = 0.02$
$\lambda_{\min}(oldsymbol{K}_arepsilon)$	7.38×10^{-8}	2.11×10^{-6}	7.77×10^{-5}	1.57×10^{-4}	1.48×10^{-2}

Table: Minimum eigenvalue $\lambda_{min}(K_{\varepsilon})$ under different initializations for $\varepsilon=0.01$

Theoretical Results

Small step size \triangle $oldsymbol{arepsilon}_k$, and initial value for the initial error for solving large $oldsymbol{arepsilon}_0$

Theorem 2 (Convergence of Homotopy Dynamics)

Suppose $h(\varepsilon, u)$, the homotopy operator, is a continuous operator for $0 < \varepsilon_n \le \varepsilon_0$ and $u \in H^4(\Omega)$, and

$$||h(u_1,\varepsilon) - h(u_2,\varepsilon)||_{H^2(\Omega)} \le K_{\varepsilon}||u_1 - u_2||_{H^2(\Omega)}.$$

Assume there exists a constant K such that $(\varepsilon_k - \varepsilon_{k+1})K_{\varepsilon_k} \leq K \cdot \frac{\varepsilon_0 - \varepsilon_n}{n}$ and

$$\tau := \frac{n}{\varepsilon_0 - \varepsilon_n} \sup_{0 \le k \le n} (\varepsilon_k - \varepsilon_{k+1})^2 ||u(\varepsilon_k)||_{H^4(\Omega)} \ll 1,$$

$$e_0 := \|u(\varepsilon_0) - U(\varepsilon_0)\|_{H^2(\Omega)} \ll 1$$

then we have

Step size $\triangle \, \varepsilon_k$

$$||u(\varepsilon_n) - U(\varepsilon_n)||_{H^2(\Omega)} \le \frac{e_0}{e_0} e^{K(\varepsilon_0 - \varepsilon_n)} + \frac{\tau(e^{K(\varepsilon_0 - \varepsilon_n)} - 1)}{2K} \ll 1.$$

Initial error solved by original method for large arepsilon

Conclusion

- We theoretically analyze the root cause of training difficulties under small ε.
- To overcome this challenge, we develop a Homotopy Dynamics-based training algorithm.
- Extensive theoretical and empirical results demonstrate the effectiveness of our method in solving singularly perturbed problems.

