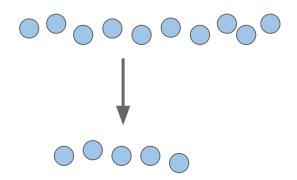
Integer Programming for Generalized Causal Bootstrap Designs

Jennifer Brennan¹, Sébastien Lahaie¹, Adel Javanmard^{1,2}, Nick Doudchenko³, Jean Pouget-Abadie¹

¹Google Research, ²University of Southern California, ³Uber (work done while at Google Research)

Two sources of uncertainty in randomized experiments



Sampling Uncertainty: What if we had drawn a different set of units?

Design Uncertainty: What if we had assigned different units to treatment vs. control?

Claim: In randomized experiments, it is important to assess design uncertainty — and doing so may give tighter CI's than incorrectly applying the standard bootstrap.

Contributions

Previous work

A causal bootstrap procedure to estimate **design uncertainty** in the **difference** in means estimator under complete randomization.

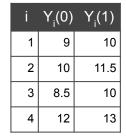
This work

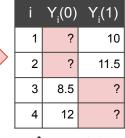
- Integer programming implementation of the causal bootstrap.
- Extensions to linear- and quadratic-in-treatment estimators.
- Extensions to general randomized designs where treatment probabilities and covariance are known.
- Application to geographic experiments.

Measuring design uncertainty

What we want

"If I were to repeat this experiment many times, what would the 5th and 95th percentiles on the test statistic be?"





		•	
= -	-0.5	•	$\hat{\tau} =$

i	Y _i (0)	$Y_i(1)$	i	Y _i (0)	Y _i (1)
1	?	10	1	9	?
2	10	?	2	?	11.5
3	?	10	3	?	10
4	12	?	4	12	?
$\hat{ au} = -1$			í	$\hat{r} = 0$	0.25

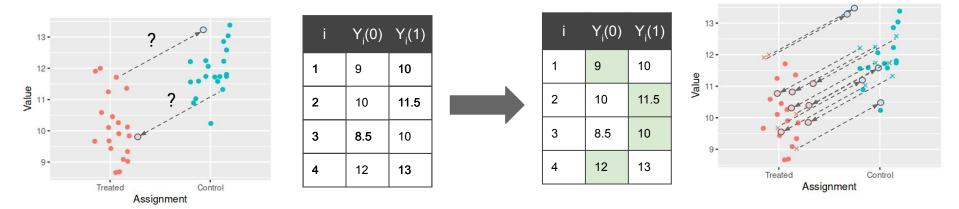
What we have

A single experimental observation

i	$Y_i(0)$	Y _i (1)
1	9	?
2	?	11.5
3	?	10
4	12	?

The Causal Bootstrap [Imbens-Menzel '21]

To generate one bootstrap replicate...



1) Impute the outcome of each unit under the unobserved condition

2) Draw a new randomization of the same units, using observed data if available and imputed data otherwise

Key Idea [Robins '88]: Impute via the joint distribution that maximizes the variance of your estimator, subject to matching the observed control and treatment marginal outcomes. For diff-in-means + complete randomization, this is the assortative copula [Aronow et al '14].

Integer Programming Formulation

- Let $Z_i \in \{0, 1\}$ denote the binary treatment indicator for unit *i*.
- Let $X_{ik}^{(a)} \in \{0, 1\}$ be a binary optimization variable, indicating whether unit i has outcome k under treatment status a.
- **Q** is a symmetric positive definite matrix that depends on $Pr(Z_i = 1)$ and $Cov(Z_i, Z_j)$ for all pairs of units i, j.

max	$\mathbf{X}^{\mathbf{T}}\mathbf{Q}\mathbf{X}$	(4)	maximize estimator variance
s.t.	$\mathbf{X} \in \{0,1\}^{N \cdot \mathcal{Y} }$		
	$X_{ik}^{(Z_i)} = 1 \text{ iff } Y_i^{obs} = y_k$	(a)	assign unit to observed outcome
$\forall a,i,k$	$X_{ik}^{(a)} = 0 \text{ iff } y_k \notin \text{supp}(F_a)$	(b)	avoid outcomes not in support
orall a, i	$\sum_{k=1}^{K} X_{ik}^{(a)} = 1$	(c)	→ each unit is assigned to at most one outcome for a = 0,1
$\forall a, k, b$	$(-1)^b \sum_{i=1}^N X_{ik}^{(a)} \left(\frac{Z_i}{N} - \frac{1 - Z_i}{N} \right) \le \epsilon$	(d)	marginals must stay the same

Simulation Result

We test our method on a **simulated geographical experiment** estimating the effect of an intervention on countries' GDP.

We consider two designs: **complete randomization** and **matched pairs**, and two estimators: **difference in means** and **model imputation**.

Our causal bootstrap achieves **almost nominal coverage**, with **up to 45% narrower confidence intervals** compared to the standard bootstrap.