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Two sources of uncertainty in randomized experiments
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Sampling Uncertainty: What if we Design Uncertainty: What if we had assigned
had drawn a different set of units? different units to treatment vs. control?

Claim: In randomized experiments, it is important to assess design uncertainty — and
doing so may give tighter Cl's than incorrectly applying the standard bootstrap.



Contributions

Previous work

A causal bootstrap procedure to estimate design uncertainty in the difference in
means estimator under complete randomization.

This work
e Integer programming implementation of the causal bootstrap.
e Extensions to linear- and quadratic-in-treatment estimators.

e Extensions to general randomized designs where treatment probabilities and
covariance are known.

e Application to geographic experiments.



Measuring design uncertainty

What we want

"If | were to repeat this experiment many
times, what would the 5th and 95th
percentiles on the test statistic be?"

What we have

A single experimental
observation
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The Causal Bootstrap [Imbens-Menzel '21]

To generate one bootstrap replicate...
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Treated Control Assignment
Assignment
1) Impute the outcome of each unit under 2) Draw a new randomization of the same
the unobserved condition units, using observed data if available and
imputed data otherwise

Key Idea [Robins ‘88]: Impute via the joint distribution that maximizes the variance of your

estimator, subject to matching the observed control and treatment marginal outcomes.
For diff-in-means + complete randomization, this is the assortative copula [Aronow et al '14].



Integer Programming Formulation

e Let Z; €{0, 1} denote the binary treatment indicator for unit .

o Let Xz.(g) €{0, 1} be a binary optimization variable, indicating whether unit i has
outcome k under treatment status a.

e (Q isasymmetric positive definite matrix that depends on Pr(Z, = 1) and Cov(Z,, Zj)
for all pairs of units i, j.

max XTQX (4) | — maximize estimator variance
st. X e {0,1}V VI
Viyk, X7V =1iff Y =y, (a) | —— assign unit to observed outcome
Va,ik, X' =0iff y; ¢ supp(Fy) (b) | —— avoid outcomes not in support
K
Vai, > X =1 (c) | — each unit is assigned to at
k=1 most one outcome for a = 0,1
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Simulation Result
We test our method on a simulated geographical experiment estimating the effect of
an intervention on countries' GDP.

We consider two designs: complete randomization and matched pairs, and two
estimators: difference in means and model imputation.

Our causal bootstrap achieves almost nominal coverage, with up to 45% narrower
confidence intervals compared to the standard bootstrap.



