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Two sources of uncertainty in randomized experiments

Sampling Uncertainty: What if we 
had drawn a different set of units?

Design Uncertainty: What if we had assigned 
different units to treatment vs. control?

Claim: In randomized experiments, it is important to assess design uncertainty — and 
doing so may give tighter CI's than incorrectly applying the standard bootstrap.



Contributions

Previous work

A causal bootstrap procedure to estimate design uncertainty in the difference in 
means estimator under complete randomization.

This work

● Integer programming implementation of the causal bootstrap.

● Extensions to linear- and quadratic-in-treatment estimators.

● Extensions to general randomized designs where treatment probabilities and 
covariance are known.

● Application to geographic experiments.



Measuring design uncertainty
What we want
"If I were to repeat this experiment many 
times, what would the 5th and 95th 
percentiles on the test statistic be?"

What we have
A single experimental 
observation
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The Causal Bootstrap [Imbens-Menzel '21]

1) Impute the outcome of each unit under 
the unobserved condition

?

?

2) Draw a new randomization of the same 
units, using observed data if available and 
imputed data otherwise
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To generate one bootstrap replicate…

Key Idea [Robins ‘88]: Impute via the joint distribution that maximizes the variance of your 
estimator, subject to matching the observed control and treatment marginal outcomes.
For diff-in-means + complete randomization, this is the assortative copula [Aronow et al '14].
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Integer Programming Formulation
● Let      𝝐 {0, 1} denote the binary treatment indicator for unit i.
● Let           𝝐 {0, 1}  be a binary optimization variable, indicating whether unit i has 

outcome k under treatment status a.
●        is a symmetric positive definite matrix that depends on Pr(Zi = 1) and Cov(Zi , Zj) 

for all pairs of units i, j.  

maximize estimator variance

assign unit to observed outcome
avoid outcomes not in support

each unit is assigned to at 
most one outcome for a = 0,1
marginals must stay the same



Simulation Result

We test our method on a simulated geographical experiment estimating the effect of 
an intervention on countries' GDP.

We consider two designs: complete randomization and matched pairs, and two 
estimators: difference in means and model imputation.

Our causal bootstrap achieves almost nominal coverage, with up to 45% narrower 
confidence intervals compared to the standard bootstrap.


