

MiraGe: Editable 2D Images using Gaussian Splatting

Joanna Waczyńska Jagiellonian University
Doctoral School of Exact and Natural Sciences

Tomasz Szczepanik Jagiellonian University

Piotr Borycki Jagiellonian University

Sławomir Tadeja University of Cambridge

with GaMeS

parametrization

Thomas Bohné, University of Cambridge **Przemysław Spurek** Jagiellonian University IDEAS NCBR

TL: DR

- MiraGe encodes 2D images by simulating human perception.
- Flat 3D Gaussian components achieves state-of-the-art reconstruction quality.
- Manipulation of 2D images within 3D space, creating the illusion of 3D effects.
- Integration with physics engine, enabling physics-based modifications and interactions for both 2D and 3D environments.

MiraGe perceives a 2D image as a human would view a photograph or a sheet of paper, treating it as a flat object within a 3D space

How to control Gaussians? Three approches: Amorphous, 2D, Graphite

The model has the ability to produce high-quality renders and create an animation/modificat ion of the object due to Gaussians (i.e., Triangles Soup) shape modification

Modifications

- Integrating physical engines with 2D images
 Editing 2D images directly within a 3D space
- Enabling complex nonlinear modifications of 2D images

Three approaches for Gaussian control

Reconstruction task

MiraGe is surpassing baselines in PSNR with only 5k iterations, while also having a shorter training time!

	Kodak dataset		DIV2K dataset	
	PSNR ↑	Train Time(s)	↑PSNR ↑′	Train Time(s) ↑
WIRE	41.47	14339	35.64	25684
SIREN	40.83	6582	39.08	15125
I-NGP	43.88	491	37.06	676
NeuRBF	43.78	992	38.60	1715
3DGS	43.69	340	39.36	481
GI-70K	44.08	107	39.53	121
GI-70K*	44.12	116	39.53	112
GI-100K*	38.93	126	41.48	120
Our-70K; 5k iter	49.07	57	44.37	75
Our-100K; 5k iter	51.04	59	46.23	79
Our-70K; 30k iter	57.41	547	53.22	789
Our-100K; 30k iter	59.52	560	54.54	946

