

Human Cognition-Inspired Hierarchical Fuzzy Learning Machine

Junbiao Cui, Qin Yue, Jianqing Liang, Jiye Liang

Presenter: Junbiao Cui

Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China.

Outline

- 1 Motivation
- 2 Method Design
- 3 Theory Analysis
- 4 Experiment
- 5 Conclusion and Outlook

2. Method Design

- Classification is a cornerstone of machine learning
- A vast array of classifiers, categorized into
 - ➤ Based on discrete 0-1, such as KNN, Decision tree, Naive Bayes, etc.
 - ➤ Based on continuous proxies of 0-1 loss, such as Support Vector Machine (hinge loss), AdaBoost (exponential loss), Deep Neural Network (cross-entropy loss), etc.
- Underlying assumption, i.e., the concepts can be precisely defined
- **■** However, in human cognition
 - > concepts are often inherently ambiguous
 - > concepts are deeply embedded in human knowledge system

2. Method Design

Overall Goal

Class Knowledge Contained in Human Knowledge System

Machine Learning Model

2. Method Design

3. Theory Analysis

- Construct FSR-based Quotient Space Theory
- Represent Data and Knowledge in Quotient Space
- Align Data and Knowledge in Quotient Space

4. Experiment

- Interpretability Analysis
 - MNIST data set, 100 training sample, 10 samples per class
 - > Class FSR, constructed by 10 human volunteers
 - > Result

The hierarchical structures derived by Human Knowledge and Training Data are aligned

4. Experiment

■ Generalization Analysis

- ► 6 data set, i.e., APY, ImageNet, AWA1, AWA2, FLO, CUB
- > 2 types of knowledge, i.e., class description vector (CK₁) and WordNet (CK₂)
- > Result

	APY	IMAGENET1K	AWA1	AWA2	FLO	CUB
KNN	85.35	75.49	86.61	89.83	83.39	47.30
DT	63.13		63.47	70.09	42.65	21.64
SVM	84.54		84.26	89.06	86.56	43.89
NB	76.13	73.66	84.67	87.68	85.53	60.27
CEC	89.08	75.62	88.48	91.67	93.58	61.49
FLM	89.42	76.02	89.95	92.79	94.05	66.19
CK ₁ -HFLM	90.23	76.16	91.10	93.59	95.06	68.78
CK ₂ -HFLM	90.21	76.20	90.87	93.35	N/A	N/A

Significant gains in Generalization Performance

5. Conclusion and Outlook

- Human knowledge are represented as class FSR
- By hierarchical hlignment loss, class FSR guide the learning process
- Human knowledge and trainig data are aligned on quotient space
- Significant gains in interpretability and generalization performance
- Great promise for open-world learning tasks, such as zeroshot learning and continual learning, etc.

Thanks!

School of Computer and Information Technology (School of Big Data), Shanxi University http://cs.sxu.edu.cn/index.html

Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, http://cicip.sxu.edu.cn/index.htm

Correspondence to: Jianqing LiangLiangLiangLiangLiangLiangLiangLiangLiang<a hr