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B Classification is a cornerstone of machine learning
Bl A vast array of classifiers, categorized into
> Based on discrete 0-1, such as KNN, Decision tree, Naive Bayes, etc.

» Based on continuous proxies of 0-1 loss, such as Support Vector Machine (hinge loss),
AdaBoost (exponential loss), Deep Neural Network (cross-entropy loss), etc.

B Underlying assumption, i.e., the concepts can be precisely defined

B However, in human cognition

» concepts are often inherently ambiguous

» concepts are deeply embedded in human knowledge system
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B Overall Goal
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2. Method Design
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FSRon x FSRon )Y
<
S e[0,1]*"" Hierarchical Alignment Loss T e[0,1]
Represent l Represent
( )
D -representation (D,K) -representation K -representation
{{xl},{xz},{x3},{x4},{x5},{x6},{x7},{xg},{xg}, {xlo}} _
<= {{xl,xz,x3,x4},{xs,x6,x7,x8},{x9,xm}}< >{{Cat},{t1ger},{dog}}
{{xlaxz}>{x3’x4}>{x5>x6>x7}>{x8}>{x99xlo}} < <
<
{{xl,xz,x3,x4},{xs;x(,,x”xg},{xg,xlo}} {{xl,xz,xs,x4,x5,x6,x7,x8},{xg,xlo}} {{cat,tiger},{dog}}
{{xlaxzaxsvxwxsaxeaxwxs}’{x9ax10}} < <
<
{{xl,xz,x3,x4,XS,XG,X7,X8,X9,XIO}}<—/—_—>{{xl’x2’x39x49x5’x69x79x87x9=x10}} < >{{cat,tiger,dog}}
_ Quotient Space Q )

@ Construct FSR-based Quotient Space Theory
(@ Represent Data and Knowledge in Quotient Space

(3 Align Data and Knowledge in Quotient Space
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H Interpretability Analysis
» MNIST data set, 100 training sample, 10 samples per class

» Class FSR, constructed by 10 human volunteers

> Result
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The hierarchical structures derived by Human Knowledge and

Training Data are aligned



4. Experiment

B Generalization Analysis
> 6 data set, i.e., APY, ImageNet, AWA1, AWA2, FLO, CUB
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» 2 types of knowledge, i.c., class description vector (CK,) and WordNet (CK,)

> Result
APY IMAGENETIK AWA1 AWA?2 FLO CUB
KNN o 75.49 86.61 89.83 83.39 47.30
DT 63.13 —— 63.47 70.09 42.65 21.64
SVM 84.54 —— 84.26 89.06 86.56 43.89
NB 76.15 73.66 84.67 87.68 85.53 60.27
CEC 89.08 T75.62 88.48 091.67 93.58 61.49
FLM 89.42 76.02 89.95 92.79 94.05 66.19
CK;:-HFLM 90.23 76.16 91.10 93.59 95.06 68.78
CK>-HFLM 90.21 76.20 90.87 93.35 N/A N/A

Significant gains in Generalization Performance




5. Conclusion and Outlook

B Human knowledge are represented as class FSR

B By hierarchical hlignment loss, class FSR guide the learning
process

B Human knowledge and trainig data are aligned on quotient
space

B Significant gains in interpretability and generalization
performance

B Great promise for open-world learning tasks, such as zero-
shot learning and continual learning, etc.
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