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Motivation: Heterogeneity inherent in sensor and actuator information

Method: TrajWorld (Trajectory World Models)

Experiments

Overview: 
TrajWorld, designed for flexibility in handling divergent state and action 
definitions, is capable of flexibly handling varying sensor and actuator 

information and capturing environment dynamics in-context. 

Pre-training & Finetuning

Transition Prediction

Figure 2: MPC with randomshooting. Note that none of the models in this setting produces a meaningful agent.

Figure 1: MPC with proposal policy. Each model is evaluated based on the average return over 10 episodes. Error bars represent 
standard deviation across 3 model training seeds. Aggregated results are normalized by the performance of the proposal policy.

Aggregated Results (3 Environments)

Aggregated Results (6 Training Sets)

Off-Policy Evaluation (OPE)

Model Predictive Control (MPC) Zero-Shot Transfer
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Scaling Trend

Few-shot adaptation Discretization Attention Analysis 

80 Unique Envs
719M Environment Steps

1.4M Episodes

Intuition: 
1. Rediscovering homogeneity in scalars.

 2. Identifying environment through historical context.
3. Inductive bias for two-dimensional 

representations.

 Interleaved temporal-variate attentions:
1. temporal attention

2. variate attention 

Motivation
World models are all with videos or language?

No modality in world models should be left behind, including essential sensor 
information represented as low-dimensional vectors!

How can we pre-train a world model to extract shared knowledge from trajectories 
across heterogeneous environments?

Vision of the future

Towards multi-modal world models 
incorporating proprioceptive, visual and 

linguistical observations
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Pre-training Fine-tuning
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Language
(instructions)

Sensor
(joint states)

Vision
(video, single frame)

Multi-Modal World Model

 merge five atasets 
with different characteristics

self-collection
environment + distribution diversity
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