The Double-Ellipsoid
Geometry of CLIP(ICML 257)
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Contrastive Language-Image Pre-

Training (CLIP)

(1) Contrastive pre-training
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Radford, Alec, et al. "Learning transferable visual models
from natural language supervision." ICML, 2021.
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# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer

# I[n, h, w, ¢c] - minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed

# W_t[d_t, d_e] - learned proj of text to embed
#t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e

12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2




Why analyze before normalization?

: There is ho image here to provide a Caption for.

» Analyze the earliest 1500
point possible

1 am not sure what this image is.
I am unable to see the image above.
There is no image to desCribe for this question.

» Projectionis an

: : € 1000 - That I00KS like it may be hiding under something.
'nform.OT'On . © An individual is taken in this very picture.
reducing operation 14 unable to see this image in this particular hit
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Geometric Properties

Property 1: Image and text reside on separate sub-
spaces, X; N A; = (.

Property 2: The mass of each modality is concen-
trated within a thin shell, with zero mass near the mean
of the distribution.

Property 3: The embedding of both text and image
is of an ellipsoid shell.

Property 4: The ellipsoids of both modalities are
tilted.

Property 5: The ellipsoids are not centered near the
origin.
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Additional Geometric observation

» Another key observation on CLIP latent space is: Conformity

» Estimate how common a sample is within a given group by:

C’(vj)z E [cos(vj?vk)]
vheS
j#k

» We prove that this property is proportional to:

common concepts lie near the modality mean, while

rare ones are pushed farther away.




s hnon-origin-centered is beneficial?
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Wang et al. "Understanding contrastive representation learning through alignment
and uniformity on the hypersphere." ICML 2020.
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Why non-origin-centered is beneficial?

Centered near origin
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Why Is it good?

Captioning [3%raih oh £he line.
a Small train
traveling down the
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Thank Youl!




