Nonconvex Theory of M-estimators
with Decomposable Regularizers



Introduction

 Many real-world problems, like documents and image data have
millions of features.

 These data sets appear to have a “high dimensional flavor”, with
dimension d larger than the sample size n.

* For many of these applications, classical “large n, fixed d” theory fails
to provide useful predictions.



Introduction

« The expectation of loss function £,,(6; Z1") is defined as
L(8) =_E(L,(6;Z7)). The target parameter 6 is defined as 8* =
argmin L(6). The M-estimator is defined as 8 €

d
alegefl%in L,(0;Z1) + A,,@(0), where @(0) is a regularizer or penalty

feR4 : L :
function, A4,, 1s a user-defined regularization weight, the “M” stands for

minimization (or maximization).

* If dimension d is fixed, sample size n goes to infinity, we have
lim V2L, = V2L, based on Cramer-Rao Bound, we know the Fisher

n—.00

information matrix V2L evaluated at 8* provides a lower bound on
the accuracy of any statistical estimator

« If d>n, lim V?L, # V2L, we can not use Fisher information
. Nn—>00
matrix to get the lower bound.



Decomposability and restricted strong
convexity

Definition 9.9  Given a pair of subspaces I C I, a norm-based regularizer @ is de-
composable with respect to (I, M+) if

D(a + ) = D(a) + DB)  foralla € Mand g € M*. (9.22)
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Figure 9.6 In the ideal case, decomposability is defined in terms of a subspace pair
(M, MM+). For any @ € M and B € M+, the regularizer should decompose as O(a + ) =
D() + D).

Wainwright, M. High-dimensional statistics: A nonasymptotic viewpoint. Cambridge University
Press, 2019.



Decomposability and restricted strong
convexity

p
Proposition 9.13  Let L,: Q — R be a convex function, let the regularizer ®: Q —
[0, 00) be a norm, and consider a subspace pair (I, [[’lj) over which @ is decomposable.
Then conditioned on the event G(A,), the error A = 6 — 6* belongs to the set

Co- (M M) = {A € Q| D(Apr) < 3D(Ap) +4D(6),.)} . (9.29)
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Figure 9.7 Illustration of the set Cg- (1. M) in the special case A = (Aj.A>.A3) € R3
and regularizer D(A) = |[|A]l1, relevant for sparse vectors (Example 9.1). This picture
shows tlhe case S = {3}, so that the model subspace is M(S5) = {A € R? | A] = As =
0}. and its orthogonal complement is given by M (S5) = {A € R? | A3 = 0}. (a) In the
special case when #] = #5 = 0. so that 8% € IM. the set C(IM. ML) is a cone, with no

dependence on &*. (b) When * does not belong to M, the set C(I1, IM+) is enlarged in

the coordinates (A, A2) that span M. It is no longer a cone, but is still a star-shaped
set.

Wainwright, M. High-dimensional statistics: A nonasymptotic viewpoint. Cambridge University
Press, 2019.

(CASTFANY) D(Apqr)

(a) (b)



Decomposability and restricted strong
convexity

Definition 9.15 For a given norm || - || and regularizer ®(-), the cost function satisfies
a restricted strong convexity (RSC) condition with radius R > 0, curvature x > 0 and
tolerance 72 if

E,(A) > gnm\? ~2d%A)  forall A € BR). (9.38)

p. vy

* (Given any differentiable cost function, we can use
the gradient to form the first-order Taylor
approximation, which then defines the first-order
Taylor-series error

Gn(A) = Ly + A) = L,(67) —(VL,(6), A).

Wainwright, M. High-dimensional statistics: A nonasymptotic viewpoint. Cambridge University
Press, 2019.



Guarantees under restricted strong
convexity

Theorem 9.19 (Bounds for general models) Under conditions (Al) and (A2), con-
sider the regularized M-estimator (9.3) conditioned on the event G(A,,),

(a) Any optimal solution satisfies the bound

O - 67) <4 [P IIE— 7l + DB, (9.48a)
(b) For any subspace pair (M, M*) such that rﬁ‘Pz([ﬁ) < g and g,(M, M) < R, we have
16— 61> < £2(M, M), (9.48b)

. S/

(A1) The cost function is convex, and satisfies the local RSC condition (9.38) with curvature
k. radius R and tolerance r;‘; with respect to an inner-product induced norm || - ||.
(A2) There is a pair of subspaces M C M such that the regularizer decomposes over (M, M™+).
2

— A= N — 8 s P
e2(M. M) =9 Z WA (M) + — {1,D(6;.) + 16T2D*(H5,,)].
K~ K
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estimation error approximation error
Wainwright, M. High-dimensional statistics: A nonasymptotic viewpoint. Cambridge University

Press, 2019.



Questions

* (1)Whether the results of Proposition 9.13 1n
(Wainwright, 2019) still hold if the loss function

1S nonconvex?

* (2)Can we recover the convergence rates of the
estimation error ”é — 0" 2(9.48b) in
(Wainwright, 2019) 1f the loss function 1s
nonconvex?




Main Contribution

» Stationary points § € R : (VL,(0) +
§) > 0,0 € R* (1) G(4,) = {@*(VL

* Theoreml: Consider any vector 6 € R% satisfies (1),
conditioned on the event G(4,,), we have 8 — 0" €

C = {A€ RY| D (A1) < 30(Ag) + 4D(6%,1))

* Remark. Theoreml shows that the results of the
Proposition 9.13 in (Wainwright, 2019) still hold for any
stationary points. But we have to pay the price. The
price is to redefine G(4,,) on 6 instead of 8*.



Main Contribution

* Weaker RSC condition:{VL(8* + A) — VL(E"),A) >
k||A]]* — 17 D% (A)(2)

* Theorem?2:Suppose the loss function satisties (2).
Consider any vector € R? satisfies (1), conditioned on

the event G(1,,), if T2W2(M) < é,we have
18 — 8%]|* < &5 (M, M)

* Remark. Theorem 2 shows that we can still recover the
convergence rate of the estimation error under
nonconvex condition, The price 1s to use the weaker

RSC condition and redefined G(A,,)



Conclusions

This paper extends the theory of M-estimators with
decomposable regularizers from convex to nonconvex

Theorem 1 recovers the results of the Proposition 9.13 in
(Wainwright, 2019) for any stationary points.

Theorem 2 recovers the convergence rates of the error

points.

Moreover, we use two nonconvex examples to illustrate our
main results.



Thank you !
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