
Nonconvex Theory of M-estimators 
with Decomposable Regularizers



Introduction

• Many real-world problems, like documents and image data have 
millions of features. 

• These data sets appear to have a “high dimensional flavor”, with 
dimension d larger than the sample size n.

• For many of these applications, classical “large n, fixed d” theory fails 
to provide useful predictions.



Introduction
• The expectation of loss function ℒ𝑛𝑛(𝜃𝜃;𝑍𝑍1𝑛𝑛) is defined as
ℒ 𝜃𝜃 ≔ 𝔼𝔼(ℒ𝑛𝑛(𝜃𝜃;𝑍𝑍1𝑛𝑛)). The target parameter 𝜃𝜃∗ is defined as 𝜃𝜃∗ =
argmin
𝜃𝜃∈ℝ𝑑𝑑

ℒ 𝜃𝜃 . The M-estimator is defined as �𝜃𝜃 ∈
argmin
𝜃𝜃∈ℝ𝑑𝑑

ℒ𝑛𝑛 𝜃𝜃;𝑍𝑍1𝑛𝑛 + 𝜆𝜆𝑛𝑛𝛷𝛷 𝜃𝜃 , where 𝛷𝛷 𝜃𝜃 is a regularizer or penalty 
function, 𝜆𝜆𝑛𝑛 is a user-defined regularization weight, the “M” stands for 
minimization (or maximization).

• If dimension 𝒅𝒅 is fixed, sample size 𝒏𝒏 goes to infinity, we have
lim
𝑛𝑛→∞

∇2ℒn = ∇2ℒ̅ , based on Cramer-Rao Bound, we know the Fisher 
information matrix ∇2ℒ̅ evaluated at 𝜃𝜃∗ provides a lower bound on 
the accuracy of any statistical estimator 

• If 𝒅𝒅 ≥ 𝒏𝒏, lim
𝑛𝑛→∞

∇2ℒn ≠ ∇2ℒ̅ ,we can not use Fisher information 
matrix to get the lower bound.
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Decomposability and restricted strong 
convexity

• Given any differentiable cost function, we can use 
the gradient to form the first-order Taylor 
approximation, which then defines the first-order 
Taylor-series error

Wainwright, M. High-dimensional statistics: A nonasymptotic viewpoint. Cambridge University 
Press, 2019.



Guarantees under restricted strong 
convexity

Wainwright, M. High-dimensional statistics: A nonasymptotic viewpoint. Cambridge University 
Press, 2019.



Questions

• (1)Whether the results of Proposition 9.13 in 
(Wainwright, 2019) still hold if the loss function 
is nonconvex?

• (2)Can we recover the convergence rates of the 
estimation error �𝜃𝜃 − 𝜃𝜃∗ 2

(9.48b) in 
(Wainwright, 2019) if the loss function is 
nonconvex?



Main Contribution
• Stationary points �𝜃𝜃 ∈ ℝ𝑑𝑑 ：�

�
∇ℒ𝑛𝑛 �𝜃𝜃 + 𝜆𝜆𝑛𝑛∇Φ �𝜃𝜃 ,𝜃𝜃 −

�𝜃𝜃 ≥ 0,𝜃𝜃 ∈ ℝ𝑑𝑑 (1) �𝔾𝔾(𝜆𝜆𝑛𝑛) ≔ Φ∗(∇ℒ𝑛𝑛 �𝜃𝜃 ) ≤ 𝜆𝜆𝑛𝑛/2

• Theorem1: Consider any vector �𝜃𝜃 ∈ ℝ𝑑𝑑 satisfies (1), 
conditioned on the event �𝔾𝔾(𝜆𝜆𝑛𝑛), we have �𝜽𝜽 − 𝜽𝜽∗ ∈
ℂ ≔ �∆∈ ℝ𝒅𝒅| �𝚽𝚽 𝜟𝜟�𝑴𝑴⊥ ≤ 𝟑𝟑𝚽𝚽 𝜟𝜟�𝑴𝑴 + 𝟒𝟒𝚽𝚽(𝜽𝜽𝑴𝑴⊥

∗ )

• Remark. Theorem1 shows that the results of the 
Proposition 9.13 in (Wainwright, 2019) still hold for any 
stationary points. But we have to pay the price. The 
price is to redefine �𝔾𝔾(𝜆𝜆𝑛𝑛) on �𝜃𝜃 instead of 𝜃𝜃∗. 



Main Contribution
• Weaker RSC condition: ∇ℒ 𝜃𝜃∗ + ∆ − ∇ℒ 𝜃𝜃∗ ,∆ ≥
𝜅𝜅||∆||2 − 𝜏𝜏𝑛𝑛2Φ2(∆)(2)

• Theorem2:Suppose the loss function satisfies (2). 
Consider any vector �𝜃𝜃 ∈ ℝ𝑑𝑑 satisfies (1), conditioned on 
the event �𝔾𝔾(𝜆𝜆𝑛𝑛),  if 𝜏𝜏𝑛𝑛2Ψ2 �𝑀𝑀 ≤ 𝜅𝜅

128
,we have

||�𝛉𝛉 − 𝛉𝛉∗||𝟐𝟐 ≤ 𝜺𝜺𝒏𝒏𝟐𝟐( �𝕄𝕄,𝕄𝕄⊥)

• Remark. Theorem 2 shows that we can still recover the 
convergence rate of the estimation error under 
nonconvex condition, The price is to use the weaker 
RSC condition and redefined �𝔾𝔾(𝜆𝜆𝑛𝑛)



Conclusions
• This paper extends the theory of M-estimators with 

decomposable regularizers from convex to nonconvex

• Theorem 1 recovers the results of the Proposition 9.13 in 
(Wainwright, 2019) for any stationary points. 

• Theorem 2 recovers the convergence rates of the error 
�𝜃𝜃 − 𝜃𝜃∗ 2

(9.48b) in (Wainwright, 2019) for any stationary 
points. 

• Moreover, we use two nonconvex examples to illustrate our 
main results.



Thank you ！
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