An Online Adaptive Stochastic DCA via Sharp SAA Convergence Rates for Subdifferential Mappings

Yuhan Ye

Peking University; incoming PhD student, MIT CCSE

Joint work with **Professor Ying Cui** (UC Berkeley) and **Jingyi Wang** (Lawrence Livermore National Laboratory)

International Conference on Machine Learning (ICML)

July 2025

SAA for Subgradients

Nonsmooth optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \mathbb{E}_{\omega}[\varphi(\mathbf{x}, \omega)] \tag{1}$$

- ullet $\varphi(\cdot,\omega)$ is regular: (weakly) convex, (locally) Lipschitz continuous.
- $\tau(x,\omega) \in \partial_x \varphi(x,\omega)$ is a subgradient selector.
- Given $\omega^1, \ldots, \omega^n \overset{\text{i.i.d.}}{\sim} \omega$, $\frac{1}{n} \sum_{k=1}^n \tau\left(x, \omega^k\right)$ is the Sample Average Approximation (SAA) for the subgradient of $\mathbb{E}_{\omega}\left[\varphi(x, \omega)\right]$.
- In general, stochastic subgradient methods rely on subgradient selectors whose expectations are valid: $\mathbb{E}_{\omega}\left[\tau\left(x,\omega^{k}\right)\right]\in\partial\mathbb{E}_{\omega}\left[\varphi(x,\omega)\right]$.

Challenge: Set-valued Subdifferentials

- When φ is smooth at x, $\partial_x \varphi(x, \omega^k) = {\nabla_x \varphi(x, \omega^k)}.$
 - Unbiased: $\mathbb{E}_{\omega}[\nabla_{x}\varphi(x,\omega)] = \nabla \mathbb{E}_{\omega}[\varphi(x,\omega)];$
 - Classic variance reduction rate:

$$\mathbb{E}_{\bar{\omega}^n} \left| \frac{1}{n} \sum_{k=1}^n \nabla_x \varphi(x, \omega^k) - \nabla \mathbb{E}_{\omega} [\varphi(x, \omega)] \right|^2 \leq \frac{\sigma^2}{n}.$$

- When φ is nonsmooth at x, $\partial_x \varphi(x, \omega)$ is set-valued.
 - $\mathbb{E}_{\omega} \partial_{x} \varphi(x, \omega)$ is the set of $\mathbb{E}_{\omega} \left[\tau \left(x, \omega^{k} \right) \right]$ over all integrable selection;
 - \mathbb{E}_{ω} and ∂_{x} are interchangeable when $\varphi(\cdot, \omega)$ is Clarke regular.
- The problem is:
 - $\mathbb{E}_{\omega} [\tau(x,\omega)] \in \partial \mathbb{E}_{\omega} [\varphi(x,\omega)]$ only if $\tau(x,\cdot)$ is measurable¹;
 - Such measurable selectors may be difficult to compute.

¹F. H. Clarke. *Optimization andonsmooth Analysis*. SIAM, 1990.

Convergence Rate for the SAA of Subdifferential Mappings

• Define the SAA error for $\partial \varphi(x, \cdot) : \Omega \to 2^{\mathbb{R}^d}$ by the Hausdorff distance:

$$\Delta_{n}\left(\varphi,x,\bar{\omega}^{n}\right)\triangleq\mathbb{H}\left(\frac{1}{n}\sum_{i=1}^{n}\partial_{x}\varphi\left(x,\omega^{i}\right),\mathbb{E}_{\omega}\partial_{x}\varphi(x,\omega)\right),$$

where
$$\mathbb{H}(A, C) \triangleq \max\{\mathbb{D}(A, C), \mathbb{D}(C, A)\}, \ \mathbb{D}(A, C) \triangleq \sup_{x \in A} \operatorname{dist}(x, C).$$

- $\tau(x,\cdot)$ no longer needs to be measurable if Δ_n is bounded well.
- Existing work:
 - $O(\sqrt[4]{d/n})$ uniform rate for the gradients of the Moreau envelopes.²
 - $O(\sqrt{d/n})$ uniform rate under convex-smooth composite structure and further subgaussian assumptions on distributions.³

²D. Davis and D. Drusvyatskiy, "Graphical Convergence of Subgradients in Nonconvex Optimization and Learning," *Mathematics of Operations Research*, vol. 47, no. 1, pp. 209–231, 2022.

³ F. Ruan, "Subgradient Convergence Implies Subdifferential Convergence on Weakly Convex Functions: With Uniform Rate Guarantees," arXiv preprint arXiv:2405.10289, 2024.

Our Result

• A clean $O(\sqrt{d/n})$ pointwise convergence rate (modulo logarithmic factors), almost matching the smooth case.

Theorem

If $\varphi(\cdot,\omega)$ is (weakly) convex and Lipschitz continuous with Lipschitz constant L_{φ} uniformly in ω , for any $\alpha \in (0,1/2)$, $\alpha' \in (\alpha,1/2)$, we have

$$\sup_{x\in\mathcal{D}_{\varphi}}\mathbb{E}_{\bar{\omega}^{n}}\left[\Delta_{n}\left(\varphi,x,\bar{\omega}^{n}\right)\right]\leq\frac{\hat{c}}{\textbf{n}^{\alpha}}\quad\text{, and }\sup_{x\in\mathcal{D}_{\varphi}}\mathbb{E}_{\bar{\omega}^{n}}\left[\Delta_{n}\left(\varphi,x,\bar{\omega}^{n}\right)^{2}\right]\leq\frac{c}{\textbf{n}^{2\alpha}},$$

where
$$c \triangleq \hat{c} \left(\hat{c} + L_{\varphi} \frac{\sqrt{\alpha'}}{\sqrt{2(\alpha' - \alpha)e}} \right) + L_{\varphi}^2$$
, $\hat{c} \triangleq \sqrt{d} (2L_{\varphi} + L_{\varphi}/\sqrt{(1 - 2\alpha')e})$.

• This is useful for convergence analysis in stochastic nonsmooth optimization.

Sketch of Proof

Transform the Hausdorff distance of set-valued subdifferentials into the SAA error of support functions by the following lemma.

Lemma

$$\Delta_{n}\left(\varphi,x,\bar{\omega}^{n}\right) = \max_{\|u\| \leqslant 1} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma\left(u,\partial_{x}\varphi\left(x,\omega^{i}\right)\right) - \mathbb{E}_{\omega}\left[\sigma\left(u,\partial_{x}\varphi(x,\omega)\right)\right] \right|,$$

where $\sigma(u, S) \triangleq \sup_{s \in S} u^T s$.

② There is an $O(\sqrt{d/n})$ convergence rate (modulo logarithmic factors) for the SAA error of $\sigma(u,\partial_x\varphi(x,\omega))$, since $\sigma(\cdot,\partial_x\varphi(x,\omega))$ are bounded and Lipschitz continuous in $u\in\mathbb{B}(0,1)$ uniformly. ⁴

⁴This result is derived from the Rademacher average of function families, see Y. M. Ermoliev and V. I. Norkin, "Sample Average Approximation Method for Compound Stochastic Optimization Problems," *SIAM Journal on Optimization*, vol. 23, no. 4, pp. 2231–2263, 2013., and Ying Cui and Jong-Shi Pang, *Modern Nonconvex Nondifferentiable Optimization*, SIAM, 2021.

Some Details of the Lemma

• Proof technique: analyze through support functions.

Lemma

$$\Delta_{n}\left(\varphi,x,\bar{\omega}^{n}\right) = \max_{\|u\| \leqslant 1} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma\left(u,\partial_{x}\varphi\left(x,\omega^{i}\right)\right) - \mathbb{E}_{\omega}\left[\sigma\left(u,\partial_{x}\varphi(x,\omega)\right)\right] \right|,$$

where $\sigma(u, S) \triangleq \sup_{s \in S} u^T s$.

Some key points:

•
$$\sigma(u, S) = \sigma(u, \operatorname{conv} S)$$
.

$$\bullet \ \sigma(u,S+S') = \sigma(u,S) + \sigma(u,S').$$

- Hömander's formula⁵: $\mathbb{D}(A, B) = \max_{\|u\| \leq 1} (\sigma(u, A) \sigma(u, B))$, where A and B are nonempty convex and compact subsets of \mathbb{R}^p .
- \mathbb{E}_{ω} and σ are interchangeable: $\mathbb{E}_{\omega}\left[\sigma\left(u,\partial_{x}\varphi(x,\omega)\right)\right]=\sigma\left(u,\mathbb{E}_{\omega}\left[\partial_{x}\varphi(x,\omega)\right]\right)$ 6.

⁵C. Castaing and M. Valadier. "Measurable multifunctions." In: *Convex Analysis and Measurable Multifunctions*. Springer, Berlin, Heidelberg, 1977, pp. 59–90.

⁶ N. S. Papageorgiou. "On the theory of Banach space valued multifunctions. I. Integration and conditional expectation." *Journal of Multivariate Analysis*, 17(2):185–206, 1985.

Application: Stochastic DC Optimization

Online decision-making with stochastic difference-of-convex objective:

$$\underset{x \in C}{\text{minimize }} f(x) \triangleq \underbrace{\mathbb{E}_{\xi \sim P_{\xi}}[G(x,\xi)]}_{\triangleq g(x)} - \underbrace{\mathbb{E}_{\zeta \sim P_{\zeta}}[H(x,\zeta)]}_{\triangleq h(x)}. \tag{2}$$

- **1** The feasible set C is convex and closed, f(x) is bounded below;
- **②** For all ξ, ζ , $G(\cdot, \xi)$ and $H(\cdot, \zeta)$ are convex and L_1 -Lipschitz continuous;
- **3** For all $x \in C$, $G(x, \cdot)$ and $H(x, \cdot)$ are L_2 -Lipschitz continuous;
- **The underlying data-generating distribution is time-varying:** At time t, samples are drawn from $P_{\xi,t}$ and $P_{\zeta,t}$, which may differ from the true distributions P_{ξ} and P_{ζ} but converge to them over time in terms of the cumulative Wasserstein-1 distance:

$$\sum_{t=1}^{\infty}W_1(P_{\xi,t},P_{\xi,t-1})<\infty,\quad \sum_{t=1}^{\infty}W_1(P_{\zeta,t},P_{\zeta,t-1})<\infty.$$

Our Work

An Online Adaptive Stochastic Proximal DCA

Online:

The method is robust to distribution shifts since it never aggregates stale samples.

Adaptive:

Both sample and step sizes are set from current estimates of the stochastic quantities.

Why adaptive sampling?

- Far from a critical point: *cheap*, *low-accuracy* estimates suffice.
- Near a critical point: *higher accuracy* is essential for convergence theory.

Algorithm The ospDCA framework

- Initialize x₀, μ₀, N_{ε,0}, N_{h,0}.
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Generate i.i.d. samples $S_{\mathbf{g},t} = \{\xi^{t,i}\}_{i=1}^{N_{\mathbf{g},t}}$ and $S_{h,t} = \{\zeta^{t,i}\}_{i=1}^{N_{h,t}}$ from $P_{\xi,t}$ and $P_{\zeta,t}$, which are independent of the past samples.
- 4: Set $\bar{g}_t(x) = \frac{1}{N_{g,t}} \sum_{i=1}^{N_{g,t}} G(x, \xi^{t,i})$, $\bar{h}_t(x) = \frac{1}{N_{h,t}} \sum_{i=1}^{N_{h,t}} H(x, \zeta^{t,i})$, and select $\bar{y}_t \in \partial \bar{h}_t(x) = \frac{1}{x} \sum_{i=1}^{N_{h,t}} \lambda_{h} H(x_t, \zeta^{t,i})$.
- 5: Solve the convex subproblem to obtain \bar{d}_t :

minimize
$$\bar{g}_t(x_t + d) - \bar{h}_t(x_t) - \bar{y}_t^T d + \frac{1}{2}\mu_t \|d\|^2$$

subject to $x_t + d \in C$.

- 6: Set $x_{t+1} = x_t + \bar{d}_t$.
- Update μ_{t+1}, N_{σ,t+1}, N_{h,t+1} adaptively.
- 8: end for

An adaptive sampling strategy:

Given sample size upper bound sequence $\{\hat{N}_{g,t}\}$ and $\{\hat{N}_{h,t}\}$ which satisfy $\sum_{t\geq 0} \left(\hat{N}_{h,t}^{-h} + \hat{N}_{g,t}^{-t,0}\right) < \infty$, predetermined proximal parameters $\{\mu_t\}$ with upper bound $\hat{\mu}$ and lower bound $\hat{\mu}$, update $N_{g,t+1}$ and $N_{h,t+1}$ such that one of the followings stands:

1.
$$\left(\mu_t - \frac{\check{\mu}}{2}\right) \left\|\bar{d}_t\right\|^2 \ge \frac{C_g}{\mu_{t+1} N_{g,t+1}^{\alpha g}} + \frac{C_h}{(2\rho_g + 2\rho_h + \check{\mu}) N_{h,t+1}^{\alpha_h}};$$

2.
$$N_{g,t+1} \ge \hat{N}_{g,t+1}$$
, and $N_{h,t} \ge \hat{N}_{h,t+1}$.

Convergence Property and Sample Sizes Requirement

- The algorithm converges subsequentially to DC critical points almost surely.
- The sample size of our algorithm matches the results achieved in the smooth case under static distributions.

Table: Online stochastic DCA: Sample size at iteration k (modulo logarithmic factors)

Method	Assumption		Sample size	
	Convex part	Concave part	Convex part	Concave part
Previous work ⁷	Nonsmooth	Nonsmooth	$O(k^2)$	$O(k^2)$
	Nonsmooth	Smooth	$O(k^2)$	O(k)
Ours	Nonsmooth	Nonsmooth	$O(k^2)$	O(k)

⁷Le Thi, Hoai An, Luu, Hoang Phuc Hau, and Dinh, Tao Pham. "Online Stochastic DCA with Applications to Principal Component Analysis." *IEEE Transactions on Neural Networks and Learning Systems*, vol. 35, no. 5, 2024, pp. 7035–7047.

Application: Online Sparse Robust Regression

$$\min_{\beta \in \mathbb{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}_t} \left[|y - \langle \beta, x \rangle| \right] + \lambda \sum_{j=1}^d \min(1, \alpha |\beta_j|).$$

- $\{(x_i, y_i)\}_{i=1}^{\infty}$ are drawn from unknown and varying distributions \mathcal{D}_t .
- The capped- ℓ_1 penalty $\sum_{i=1}^d \min(1, \alpha |\beta_i|)$ approximates the ℓ_0 -norm.
- DC decomposition:

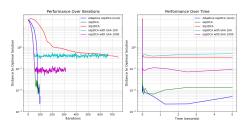
$$\min_{\beta \in \mathbb{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}_t} \left[G(\beta, x, y) \right] - h(\beta),$$

where
$$G(\beta, x, y) = |y - \langle \beta, x \rangle| + \lambda \sum_{j=1}^{d} (1 + \alpha |\beta_j|), h(\beta) = \sum_{j=1}^{d} \max(1, \alpha |\beta_j|).$$

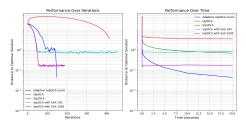
Experiment Setup.

- x_t is sampled uniformly from $[-1,1]^d$.
- The label $y_t = x_t^{\top}(\beta_{\text{opt}} + \delta_t) + \varepsilon$, where $\varepsilon \sim N(0, 1)$, δ_t is the distribution shift.
- Set $\delta_t = (-1)^t 100t^{-2} \mathbf{1}_d$, since $W_1(\mathcal{D}_t, \mathcal{D}_{t+1}) \leq \|\delta_t \delta_{t+1}\|_1$.

Numerical Experiments



(a)
$$d = 50$$
, $\beta_{\text{opt}} = [10, -15, 0, 0, \cdots, 0]$.



(b)
$$d = 200$$
, $\beta_{\text{opt}} = [10, -15, 0, 0, \cdots, 0]$.