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SAA for Subgradients

Nonsmooth optimization problem:

min
x∈Rd

Eω[φ(x , ω)] (1)

φ(·, ω) is regular: (weakly) convex, (locally) Lipschitz continuous.

τ (x , ω) ∈ ∂xφ (x , ω) is a subgradient selector.

Given ω1, . . . , ωn i.i.d.∼ ω, 1
n

∑n
k=1 τ

(
x , ωk

)
is the Sample Average

Approximation (SAA) for the subgradient of Eω [φ(x , ω)].

• In general, stochastic subgradient methods rely on subgradient selectors whose
expectations are valid: Eω

[
τ
(
x , ωk

)]
∈ ∂Eω [φ(x , ω)].
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Challenge: Set-valued Subdifferentials

• When φ is smooth at x , ∂xφ
(
x , ωk

)
= {∇xφ(x , ω

k)}.
Unbiased: Eω[∇xφ(x , ω)] = ∇Eω[φ(x , ω)];

Classic variance reduction rate:

Eω̄n

∣∣∣∣∣1n
n∑

k=1

∇xφ(x , ω
k)−∇Eω[φ(x , ω)]

∣∣∣∣∣
2

≤ σ2

n
.

• When φ is nonsmooth at x , ∂xφ(x , ω) is set-valued.

Eω∂xφ(x , ω) is the set of Eω

[
τ
(
x , ωk

)]
over all integrable selection;

Eω and ∂x are interchangeable when φ(·, ω) is Clarke regular.

• The problem is:

Eω [τ (x , ω)] ∈ ∂Eω [φ(x , ω)] only if τ(x , ·) is measurable1;

Such measurable selectors may be difficult to compute.

1F. H. Clarke. Optimization andonsmooth Analysis. SIAM, 1990.
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Convergence Rate for the SAA of Subdifferential Mappings

• Define the SAA error for ∂φ(x , ·) : Ω → 2R
d

by the Hausdorff distance:

∆n (φ, x , ω̄
n) ≜ H

(
1

n

n∑
i=1

∂xφ
(
x , ωi

)
,Eω∂xφ(x , ω)

)
,

where H(A,C ) ≜ max{D(A,C ),D(C ,A)}, D(A,C ) ≜ sup
x∈A

dist(x ,C ).

• τ(x , ·) no longer needs to be measurable if ∆n is bounded well.

• Existing work:

O( 4
√
d/n) uniform rate for the gradients of the Moreau envelopes.2

O(
√
d/n) uniform rate under convex-smooth composite structure and further

subgaussian assumptions on distributions.3

2
D. Davis and D. Drusvyatskiy, “Graphical Convergence of Subgradients in Nonconvex Optimization and Learning,” Mathematics of Operations

Research, vol. 47, no. 1, pp. 209–231, 2022.
3
F. Ruan, “Subgradient Convergence Implies Subdifferential Convergence on Weakly Convex Functions: With Uniform Rate Guarantees,” arXiv

preprint arXiv:2405.10289, 2024.
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Our Result

• A clean O(
√

d/n) pointwise convergence rate (modulo logarithmic factors),
almost matching the smooth case.

Theorem

If φ( ·, ω) is (weakly) convex and Lipschitz continuous with Lipschitz constant Lφ
uniformly in ω, for any α ∈ (0, 1/2), α′ ∈ (α, 1/2), we have

sup
x∈Dφ

Eω̄n [∆n (φ, x , ω̄
n)] ≤ ĉ

nα
, and sup

x∈Dφ

Eω̄n

[
∆n (φ, x , ω̄

n)2
]
≤ c

n2α
,

where c ≜ ĉ

(
ĉ + Lφ

√
α′√

2(α′−α)e

)
+ L2φ, ĉ ≜

√
d(2Lφ + Lφ/

√
(1− 2α′)e).

• This is useful for convergence analysis in stochastic nonsmooth optimization.
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Sketch of Proof

1 Transform the Hausdorff distance of set-valued subdifferentials into the SAA
error of support functions by the following lemma.

Lemma

∆n (φ, x , ω̄
n) = max

∥u∥⩽1

∣∣∣∣∣1n
n∑

i=1

σ
(
u, ∂xφ

(
x , ωi

))
− Eω [σ (u, ∂xφ(x , ω))]

∣∣∣∣∣ ,
where σ(u,S) ≜ sups∈S u

T s.

2 There is an O(
√

d/n) convergence rate (modulo logarithmic factors) for the
SAA error of σ (u, ∂xφ (x , ω)), since σ (·, ∂xφ (x , ω)) are bounded and
Lipschitz continuous in u ∈ B(0, 1) uniformly. 4

4This result is derived from the Rademacher average of function families, see Y. M. Ermoliev
and V. I. Norkin, “Sample Average Approximation Method for Compound Stochastic
Optimization Problems,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2231–2263, 2013.,
and Ying Cui and Jong-Shi Pang, Modern Nonconvex Nondifferentiable Optimization, SIAM,
2021.
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Some Details of the Lemma

• Proof technique: analyze through support functions.

Lemma

∆n (φ, x , ω̄
n) = max

∥u∥⩽1

∣∣∣∣∣1n
n∑

i=1

σ
(
u, ∂xφ

(
x , ωi

))
− Eω [σ (u, ∂xφ(x , ω))]

∣∣∣∣∣ ,
where σ(u,S) ≜ sups∈S u

T s.

Some key points:

• σ(u,S) = σ(u, conv S). • σ (u,S + S ′) = σ(u,S) + σ (u,S ′).

• Hömander’s formula5: D(A,B) = max∥u∥⩽1(σ(u,A)− σ(u,B)), where A and B
are nonempty convex and compact subsets of Rp.

• Eω and σ are interchangeable: Eω [σ (u, ∂xφ(x , ω))] = σ (u,Eω [∂xφ(x , ω)])
6.

5
C. Castaing and M. Valadier. “Measurable multifunctions.” In: Convex Analysis and Measurable Multifunctions. Springer, Berlin, Heidelberg, 1977,

pp. 59–90.
6
N. S. Papageorgiou. “On the theory of Banach space valued multifunctions. I. Integration and conditional expectation.” Journal of Multivariate

Analysis, 17(2):185–206, 1985.

7 / 12



Application: Stochastic DC Optimization

Online decision-making with stochastic difference-of-convex objective:

minimize
x∈C

f (x) ≜ Eξ∼Pξ
[G (x , ξ)]︸ ︷︷ ︸

≜g(x)

−Eζ∼Pζ
[H(x , ζ)]︸ ︷︷ ︸

≜h(x)

. (2)

1 The feasible set C is convex and closed, f (x) is bounded below;

2 For all ξ, ζ, G (·, ξ) and H(·, ζ) are convex and L1-Lipschitz continuous;

3 For all x ∈ C , G (x , ·) and H(x , ·) are L2-Lipschitz continuous;

4 The underlying data-generating distribution is time-varying:
At time t, samples are drawn from Pξ,t and Pζ,t , which may differ from the
true distributions Pξ and Pζ but converge to them over time in terms of the
cumulative Wasserstein-1 distance:

∞∑
t=1

W1(Pξ,t ,Pξ,t−1) < ∞,

∞∑
t=1

W1(Pζ,t ,Pζ,t−1) < ∞.
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Our Work

An Online Adaptive Stochastic Proximal DCA

Online:

The method is robust to distribution
shifts since it never aggregates stale
samples.

Adaptive:

Both sample and step sizes are set
from current estimates of the
stochastic quantities.

Why adaptive sampling?

Far from a critical point: cheap,
low-accuracy estimates suffice.

Near a critical point: higher accuracy
is essential for convergence theory.
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Convergence Property and Sample Sizes Requirement

• The algorithm converges subsequentially to DC critical points almost surely.

• The sample size of our algorithm matches the results achieved in the
smooth case under static distributions.

Table: Online stochastic DCA: Sample size at iteration k (modulo logarithmic factors)

Method
Assumption Sample size

Convex part Concave part Convex part Concave part

Previous work7
Nonsmooth Nonsmooth O(k2) O(k2)

Nonsmooth Smooth O(k2) O(k)

Ours Nonsmooth Nonsmooth O(k2) O(k)

7
Le Thi, Hoai An, Luu, Hoang Phuc Hau, and Dinh, Tao Pham. “Online Stochastic DCA with Applications to Principal Component Analysis.” IEEE

Transactions on Neural Networks and Learning Systems, vol. 35, no. 5, 2024, pp. 7035–7047.
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Application: Online Sparse Robust Regression

min
β∈Rd

E(x,y)∼Dt
[|y − ⟨β, x⟩|] + λ

d∑
j=1

min(1, α|βj |).

• {(xi , yi )}∞i=1 are drawn from unknown and varying distributions Dt .

• The capped-ℓ1 penalty
∑d

j=1 min(1, α|βj |) approximates the ℓ0-norm.

• DC decomposition:

min
β∈Rd

E(x,y)∼Dt
[G (β, x , y)]− h(β),

where G (β, x , y) = |y − ⟨β, x⟩|+ λ
∑d

j=1 (1 + α|βj |), h(β) =
∑d

j=1 max(1, α|βj |).

Experiment Setup.
• xt is sampled uniformly from [−1, 1]d .

• The label yt = x⊤t (βopt + δt) + ε, where ε ∼ N(0, 1), δt is the distribution shift.

• Set δt = (−1)t100t−21d , since W1(Dt ,Dt+1) ≤ ∥δt − δt+1∥1 .
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Numerical Experiments

(a) d = 50, βopt = [10,−15, 0, 0, · · · , 0].

(b) d = 200, βopt = [10,−15, 0, 0, · · · , 0].
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