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- Enforce positivity of jacobians via architectural constraints
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Universal Approximation Theorem

1. Enforcing weight-constraints guarantees monotonicity, however, the universal 
approximation theorem does not apply anymore

2. Mikulincer & Reichman (2022) show that 4 layers are enough if the 
Heaviside-step function is used as activation, but does not hold for Rectified 
activations  (ReLU, CELU, etc.) 

3. We generalize the result to non bounded activation by proving that:

MLPs with 4 layers, non-negative constrained weights and with monotonic 
activations that saturate on alternating sides are universal approximators for 
monotonic functions

Mikulincer, D. and Reichman, D.Size and depth of monotone neural networks: interpolation and approximation. Neurips 2022



Need for Activation Alternation

- The class of convex and non-decreasing functions is closed under composition
- Thus, non-negative weight-constrained MLPs with monotonic and convex 

activations (i.e. ReLU) are provably not universal approximators

❌Not a universal approximator



Non-Positive Constrained Monotonic MLPs

- The class of convex and non-decreasing/increasing functions is not closed 
under composition

- By a slight sign-rearrangement of the main theorem, it can be shown that 
negatively weight-constrained MLPs are universal approximators

- Thus, surprisingly, changing the weight sign results in a more expressive model

❌Not a universal approximator

✅A universal approximator
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Activation Switch

- Though non-positive-constrained MLPs are universal approximators, their 
initialization is fundamental for an effective optimization

- A novel parametrization is presented, switching activation based on the 
parameters sign:



Evaluation

- This novel formulation achieves state of the art performances.
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