

Advancing Constrained Monotonic Neural Networks:

Achieving Universal Approximation Beyond Bounded Activations

Davide Sartor, Alberto Sinigaglia, Gian Antonio Susto University of Padova

Monotonic Neural Networks

 Applications from regularization, to algorithmic fairness, quantile regression, density estimation and generative models

Monotonic Neural Networks

- Applications from regularization, to algorithmic fairness, quantile regression, density estimation and generative models
- Enforce positivity of jacobians via architectural constraints

$$rac{\partial f_{ heta}(x)_j}{\partial x_i} \geq 0$$

Constrained Monotonic Neural Networks

A Multi-Layer-Perceptron (MLP) is a composition of function, alternating affine transformations l(x) = Wx + b and non-linearities $\sigma(x)$:

$$f(x) = l^1 \circ \sigma^1 \circ \cdots \circ l^N \circ \sigma^N(x)$$

- Composition of monotone functions is a monotone functions, thus monotonicity can be achieved by constraining each step to be monotonic:

Constrained Monotonic Neural Networks

- A Multi-Layer-Perceptron (MLP) is a composition of function, alternating affine transformations l(x) = Wx + b and non-linearities $\sigma(x)$:

$$f(x) = l^1 \circ \sigma^1 \circ \cdots \circ l^N \circ \sigma^N(x)$$

 Composition of monotone functions is a monotone functions, thus monotonicity can be achieved by constraining each step to be monotonic:

$$rac{\partial l(x)}{\partial x} \geq 0 \Rightarrow W \geq 0$$

$$rac{\partial \sigma(x)}{\partial x} \geq 0 \Rightarrow \sigma'(x) \geq 0 \;\; orall x$$

Universal Approximation Theorem

1. Enforcing weight-constraints guarantees monotonicity, however, the universal approximation theorem does not apply anymore

Universal Approximation Theorem

- 1. Enforcing weight-constraints guarantees monotonicity, however, the universal approximation theorem does not apply anymore
- 2. Mikulincer & Reichman (2022) show that 4 layers are enough if the Heaviside-step function is used as activation, but does not hold for Rectified activations (ReLU, CELU, etc.)

Universal Approximation Theorem

- 1. Enforcing weight-constraints guarantees monotonicity, however, the universal approximation theorem does not apply anymore
- 2. Mikulincer & Reichman (2022) show that 4 layers are enough if the Heaviside-step function is used as activation, but does not hold for Rectified activations (ReLU, CELU, etc.)
- 3. We generalize the result to non bounded activation by proving that:
 - MLPs with 4 layers, non-negative constrained weights and with monotonic activations that saturate on alternating sides are universal approximators for monotonic functions

- The class of convex and non-decreasing functions is closed under composition
- Thus, non-negative weight-constrained MLPs with monotonic and convex activations (i.e. ReLU) are provably not universal approximators

$$f(x) = \dots |W|ReLU(|W|x+b) + b\dots$$

Non-Positive Constrained Monotonic MLPs

- The class of convex and non-decreasing/increasing functions is not closed under composition
- By a slight sign-rearrangement of the main theorem, it can be shown that negatively weight-constrained MLPs are universal approximators
- Thus, surprisingly, changing the weight sign results in a more expressive model

$$f(x)=\ldots |W|ReLU(|W|x+b)+b\ldots$$
 Not a universal approximator $f(x)=\ldots -|W|ReLU(-|W|x+b)+b\ldots$

Activation Switch

- Though non-positive-constrained MLPs are universal approximators, **their initialization is fundamental** for an effective optimization

Activation Switch

- Though non-positive-constrained MLPs are universal approximators, their initialization is fundamental for an effective optimization
- A novel parametrization is presented, switching activation based on the parameters sign:

Algorithm 1 Forward pass of a Monotonic MLP with post-activation switch

Input: data $x \in \mathbb{R}^d$, weight matrix $W \in \mathbb{R}^{d \times d'}$, bias vectors $b \in \mathbb{R}^{d'}$, monotonic activation function σ **Output:** prediction $\hat{y} \in \mathbb{R}^{d'}$

$$W^+ := \max(W, 0)$$

$$W^- := \min(W, 0)$$

$$z^+ := W^+ \sigma(x)$$

$$z^- := W^- \sigma(-x)$$

$$\hat{y} := z^+ + z^- + b$$

Evaluation

- This novel formulation achieves **state of the art performances**.

Method	COMPAS (Test Accuracy)	Blog Feedback (Test RMSE)	Loan Defaulter (Test Accuracy)	AutoMPG (Test MSE)	Heart Disease (Test Accuracy)
XGBoost	$68.5\% \pm 0.1\%$	0.176 ± 0.005	$63.7\% \pm 0.1\%$	-	-
Certified	$68.8\% \pm 0.2\%$	0.159 ± 0.001	$65.2\% \pm 0.1\%$	-	-
Non-Neg-DNN	$69.3\% \pm 0.1\%$	0.154 ± 0.001	$65.2\% \pm 0.1\%$	10.31 ± 1.86	$89\% \pm 1\%$
DLN	$67.9\% \pm 0.3\%$	0.161 ± 0.001	$65.1\% \pm 0.2\%$	13.34 ± 2.42	$86\% \pm 2\%$
Min-Max Net	$67.8\% \pm 0.1\%$	0.163 ± 0.001	$64.9\% \pm 0.1\%$	10.14 ± 1.54	$75\% \pm 4\%$
Constrained MNN	$69.2\% \pm 0.2\%$	0.154 ± 0.001	$65.3\% \pm 0.1\%$	8.37 ± 0.08	$89\% \pm 0\%$
Scalable MNN	$69.3\% \pm 0.9\%$	0.150 ± 0.001	$65.0\% \pm 0.1\%$	7.44 ± 1.20	$88\% \pm 4\%$
Expressive MNN	$69.3\% \pm 0.1\%$	0.160 ± 0.001	$\textbf{65.4}\% \pm \textbf{0.1}\%$	7.58 ± 1.20	$90\% \pm 2\%$
Ours	$\mathbf{69.5\%} \pm \mathbf{0.1\%}$	$\boldsymbol{0.149 \pm 0.001}$	$65.4\% \pm 0.1\%$	$\textbf{7.34} \pm \textbf{0.46}$	$94\% \pm 1\%$

Project Page:

https://amco-unipd.github.io/monotonic/

Contacts:

- <<u>davide.sartor.4@phd.unipd.it</u>>
- <alberto.sinigaglia@phd.unipd.it>

