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Al for Science:
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We are leveraging Al to advance various scientific domains:
» Social Science, Finance, Medicine, and GeoScience.

Our specific focus:

* Al for Al science

* Harnessing Al to drive advancements in Al research and
development
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Al for Al Science:

The categories of Al’s “science”:

Engineering/Data Science: S
e low-level tasks, e.g., coding, data analyses, data discovery 1213,
 Expectation of objective and concrete results.
* [Easy to assess and quantify.

=

Research science: %
* high-level research activities, e.g., generating research ideas, writing and reviewing papers #],
 Results are subjective and largely influenced by personal taste.
* (Challenging to assess.

We lack a benchmark to transparently evaluate LLMs’
3 capabilities in assisting Al research science. &)




Al research daily:

v\
. Y4

We are suffering from the laborious research activities!

Reading/Reviewing Paper Brainstorming Ideas Designing Experiment/Coding Writing Paper

Can we leverage Al to alleviate the labor-intensive

=

aspects of conducting Al research? £



Existing Works/Tools:

Al for Al research science:
e Al-scientist
e MLR-Copilot

We are missing a benchmark to transparently assess
the Al’s power in doing Al research



Our Benchmark:

AAAR: Assessing Al's Potential to Assist Research

Consist of 4 presentative tasks extracted from our research daily:
(i) Equation Inference

(i) Experiment Design z

(iii) Paper Weakness

(iv) Review Critique #.



Our Benchmark:

(i) Equation Inference

(For the Commonsense Constraint Pass Rate and Hard Con-
straint Pass Rate, we utilize two evaluation strategies: micro
and macro. The micro strategy calculates the ratio of passed
constraints to the total number of constraints. The Micro

\

KPass Rate is defined as: )

2_peP 2acec, Lpassed(c,p)
ZpEP |Cp| ’

)

Micro Pass Rate =

7

denotes the set of constraints applicable to a specific plan p
in P, and passed(X,Y) is a function determining whether
\Y meets constraints X.

where P represents the set of all plans being evaluated, C), A

J

surrounding context



Our Benchmark:

(i)

Equation Inference

For the Commonsense Constraint Pass Rate and Hard Con-
straint Pass Rate, we utilize two evaluation strategies: micro
and macro. The micro strategy calculates the ratio of passed
constraints to the total number of constraints. The Micro
Pass Rate is defined as:

[ Micro Pass Rate =

ZpGP ZCECp I]-passed(c,p) (1)
ZpEP |Cp| ’

where P represents the set of all plans being evaluated, C),
denotes the set of constraints applicable to a specific plan p
in P, and passed(X,Y) is a function determining whether
Y meets constraints X.

equation (mathematical definition)
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Our Benchmark:

(i) Experiment Design 7

research gap / motivation

ABSTRACT

In the realm of large language models (LLMs), enhancing instruction-following
capability often involves curating expansive training data. This is achieved through
two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per
task instruction, aiming for better instruction adherence. ii) Scaling Input-Free
Tasks: Enlarging tasks, each composed of an (instruction, output) pair without
requiring a separate input anymore. However, LLMs under Scaling-Inputs tend
to be overly sensitive to inputs, leading to misinterpretation or non-compliance
with instructions. Additionally, Scaling Input-Free Tasks demands a substan-
tial number of tasks but is less effective in instruction-following when dealing
with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme
of instruction-following dataset curation. Specifically, we automatically Scale
Tasks per Input by diversifying these tasks with various input facets. Experimen-
tal results across four zero-shot benchmarks, spanning both Scaling-Inputs and
Scaling Input-Free Tasks schemes, reveal that LLMs, at various scales, trained
on MUFFIN generally demonstrate superior instruction-following capabilities com-
pared to those trained on the two aforementioned schemes!'|

INTRODUCTION

6

designed experiments/settings

Direct Comparison. Compared with the previous LLM-generated datasets, such as SELF-INSTRUCT,
UNNATURAL INSTRUCT, and DYNOSAUR, the models tuned on our MUFFIN consistently achieve
better performance across 3 out of 4 benchmarks, under various metrics. Besides the high quality and

Indirect Comparison. When considering the comparison with SUPERNI, our MUFFIN can still get a
comparable or even better performance under some metrics, across different models and model sizes.

arw .

Acceptance Ratios. We randomly sample 200 instances from each evaluation benchmark and use
various instruction-tuned models to generate the outputs| Subsequently, we employ 5 graduate-level



Our Benchmark:

(III) Paper Weakness C)\ review Official Review of Submission6820 by Reviewer BsoU

Summary:

This paper describes a technique for synthesizing instruction fine-tuning dat
focused on either adopting an instruction+input format and scaling the num
instructions (Scaling Input-Free Tasks). As an alternative, the technique and 1
scale the number of instructions per input (Scaling Tasks per Input).

Experimental comparisons to extensive baselines are presented on SuperNI,
effectiveness of the proposed approach in all 3 settings. Additional experime

Soundness: 3 good
Presentation: 2 fair
Contribution: 3 good
Strengths:
1. The topic of how to effectively scale synthetic instruction datasets is rele

(iV) Review C”'tique «L‘é_ meta-review Meta Review of Submission6820 by Area Chair 9tw.

U/ Dec 2023, 0. : Feb

Metareview:

This paper presents MUFFIN, a novel scheme for instruction-following datas:
relevant, with an interesting exploration of the dichotomy between scaling ir
described and clearly presented. Given the significance of the topic and the «

Justification For Why Not Higher Score:
n/a

Justification For Why Not Lower Score:
n/a



) How to make a testbed for all the tasks?



Task#1: Equation Inference

For the Commonsense Constraint Pass Rate and Hard Con-
straint Pass Rate, we utilize two evaluation strategies: micro
and macro. The micro strategy calculates the ratio of passed
constraints to the total number of constraints. The Micro

Pass Rate is defined as: _ .
Based on the surrounding context, infer the correct

(1) mathematical equation for the algorithm.

where P represents the set of all plans being evaluated, C),
denotes the set of constraints applicable to a specific plan p
in P, and passed(X, Y)) is a function determining whether
Y meets constraints X.



Task#1: Equation Inference

| Task Instruction |

Given the context of a paper, identify the missed
equation from the provided options (A, B, C, D).
[ Paper Context L @ Options

This paper proposes an algorithm
[...], the result z is defined as below:
e . .
where W is the parameter, a and b
are the [...]

(A). z= W*a+b

(B). z= W*b+a
® (C). z= W*a*b
(D). z= W*a/b

(v Bx ©x ox )

Answer
Task #1: Equation Inference

Binary classification setting: infer the correctness of
an equation based on the surrounding paper context

Input:
e Surrounding paper context

* A candidate equation

Output:
» Correctness of the equation (0 or 1).



Task#1: Equation Inference

For the Commonsense Constraint Pass Rate and Hard Con-
straint Pass Rate, we utilize two evaluation strategies: micro
and macro. The micro strategy calculates the ratio of passed origin human equation
constraints to the total number of constraints. The Micro

Pass Rate is defined as:

1) LLM synthesized equation
where P represents the sc?t of all plans being eval.uated, Co 10 s esied ceEtior
denotes the set of constraints applicable to a specific plan p

in P, and passed(X, Y) is a function determining whether
Y meets constraints X.

X X <



Task#1: Equation Inference

BERT Inspired by SelfORE [8], which exploits the
pre-trained language model, we also choose BERT [15]

as our encoder and follow the operation proposed by [16] Binary classification setting: infer the correctness of
to fit our OpenRE task better. Specifically, for a sentence an equation based on the surrounding paper context

S = {s1,..,s7}, where s indicates the token and T is the
length of S. We insert four special tokens before and after Input:

each entity mentioned in a sentence and get a new sequence: . Surrounding paper context

* A candidate equation

(1)

Qutput:
We use this sequence as the input of BERT, and we concate- » Correctness of the equation (0 or 1).
nate the last hidden state of BERT’s outputs corresponding to

[Elstart], [F2start], take it as our relational representation.




Task#1: Equation Inference

Table 11: The statistics of EQINFER . Here, the “left” and “right” input context indicates the
paper contexts before and after the missed equation; “pos.” means the ground-truth equations
(written by the source paper authors), while “neg.” is the GPT4-synthetic wrong equations.

# of classification instances 1,049
# of source papers 869
ave. “left” input context length (in words) 4,377
ave. “right” input context length (in words) 6,362
max “left” input context length (in words) 24,849
max “right” input context length (in words) 32,948
min “left” input context length (in words) 711
min “right” input context length (in words) 8
ave. “pos.” output equation length (in character) 29
ave. “neg.” output equation length (in character) 48
max “pos.” output equation length (in character) 1,039
max “neg.” output equation length (in character) 306
min “pos.” output equation length (in character) 6
min “neg.” output equation length (in character) 4




Equation Inference: data collection

1. Crawling source papers from arXiv:

[ Task #1: EQINFER )

)5)  Use source LaTeX is more precise than extracting
contex before b| the text from PDF.

context after

 Make sure all papers are peer-reviewed, i.e.,
accepted by well-known conferences.

arXiv m» =) %-}

Source LaTeX

Cleaned Paper

(@D Data Crawling and Cleaning

2. Synthesizing negative equations:
‘S = » @ » *  Prompt LLM to craft equations based on the
NG I

context after

surrounding context, i.e., negative options

—

GPT-4
Cleaned Paper

@ LLM-based Equation Synthesis ® LLM-based Filtering 3. Filtering low-quality negative equations:
(z=W*a+b | * Only keep the negative equations aligned with the
Positive Option - ' - @ context to avoid any shortcuts.
".
z=W*b+a C {0
{Z=W*b-a J Experts . .
z=W*b*a 4. Human examination:

Negative Options

* After compilation, all negative equations should be
different from the positive counterparts, i.e., truly
negative.

@ Expert-based Examination



Task#2: Experiment Design

[ Task Instruction ]

Eiven a partial paper, create a brief

experiment plan and explanations.

l Paper Context L@

This paper proposes an algorithm

for the robustness of |[...]
In the below sections, we conduct

the experiments

>
-

N =

Compare performance on [...]
Ablation study with [...]
Significance test [...]

Experiment Plan

N

To prove the effectiveness|...]
To study the impact of [...]
To avoid randomnessin [...]

Motivation Explanation

Task #2: Experiment Design

List generation: suggest a list of experiments based on the research background, along with the

explanation.

Input:

* Research background & motivation (usually the paper “abstract” and “introduction”).

Output:

* Experiment plan: a list of suggested experiments
7 * Motivation Explanation: a list of explanations (one-one corresponding to the experiments).



Task#2: Experiment Design

input

output

10

ABSTRACT

In the realm of large language models (LLMs), enhancing instruction-following
capability often involves curating expansive training data. This is achieved through
two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per
task instruction, aiming for better instruction adherence. ii) Scaling Input-Free
Tasks: Enlarging tasks, each composed of an (instruction, output) pair without
requiring a separate input anymore. However, LLMs under Scaling-Inputs tend
to be overly sensitive to inputs, leading to misinterpretation or non-compliance
with instructions. Additionally, Scaling Input-Free Tasks demands a substan-
tial number of tasks but is less effective in instruction-following when dealing
with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme
of instruction-following dataset curation. Specifically, we automatically Scale
Tasks per Input by diversifying these tasks with various input facets. Experimen-
tal results across four zero-shot benchmarks, spanning both Scaling-Inputs and
Scaling Input-Free Tasks schemes, reveal that LLLMs, at various scales, trained
on MUFFIN generally demonstrate superior instruction-following capabilities com-
pared to those trained on the two aforementioned schemesm

Direct Comparison. Compared with the previous LLM-generated datasets, such as SELF-INSTRUCT,
UNNATURAL INSTRUCT, and DYNOSAUR, the models tuned on our MUFFIN consistently achieve
better performance across 3 out of 4 benchmarks, under various metrics. Besides the high quality and

Indirect Comparison. When considering the comparison with SUPERNI, our MUFFIN can still get a
comparable or even better performance under some metrics, across different models and model sizes.

Acceptance Ratios. We randomly sample 200 instances from each evaluation benchmark and use
various instruction-tuned models to generate the outputs| Subsequently, we employ 5 graduate-level

I INTRODUCTION

With advancements in pre-training techniques, large language models (LLMs) can, to some extent,
tackle diverse unseen tasks guided by textual instructions (Radford et al., 2019; Brown et al., 2020).
This capability, known as Instruction-Following, is pivotal for developing unified versatile LLMs.
Instruction-tuning, training LLMs to generate desired responses following given instructions for
enhanced instruction-following capacity, has garnered increased attention in the community (Min
et al., 2022; Chung et al., 2022; Longpre et al., 2023; Lou et al., 2023).

The construction of datasets is crucial in instruction-tuning (Wang et al., 2023a; Zhou et al.,
2023). Existing approaches primarily adopt two strategies for constructing these datasets: (i)
Scaling-Inputs — gathering a vast set of training tasks, each accompanied by an instruction, and
then amplitying the (input, output) pairs for each task (Mishra et al., 2022b; Sanh et al., 2022;
Wei et al., 2022; Wang et al., 2022). The model is trained to produce distinct outputs for various
inputs under the same instruction. However, this approach tends to render the model excessively
sensitive to inputs, often resulting in misinterpretation or non-compliance with explicit instruction
requirements (Webson & Pavlick, 2022; Mishra et al., 2022a) like - - - generate less than five words”,
and suboptimal learning efficiency (Ivison et al., 2022; Deb et al., 2022). (ii) Scaling Input-Free
Tasks — collecting task instructions that can be answered without additional inputs, e.g., “give
the name of the highest mountain in the world”, and expanding the (instruction, output) training
pairs (Wang et al., 2023b; Xu et al., 2023a). Despite the intuitive alignment with human-assistance
objectives, covering a wide range of diverse tasks and aiding in daily queries, the input-free nature

‘ benchmark comparison: [...]

# human evaluation: [...]

‘ ablation study: [...]



Task#2: Experiment Design

ABSTRACT
Open relation extraction (OpenRE) is the task of extracting . . . .
relation schemes from open-domain corpora. Most existing List generation: suggest a list of experiments based on the
'OpenRE methods either do not fully benefit from high-quality | research background, along with the explanation.

labeled corpora or can not learn semantic representation di-
rectly, affecting downstream clustering efficiency. To address|

these problems, in this work, we propose a novel learn- Input:
' ing- e Research background & motivation (usually the paper
Relation Extraction). The framework utilizes deep metric “abstract” and “introduction”).

learning to obtain rich supervision signals from labeled data
and drive the neural model to learn semantic relational rep-

resentation directly. Experiments result in two real-world Output:
datasets show that our method outperforms other state-of-the- e Experiment plan: a list of suggested experiments

art baselines. Our source code is available on Github'. . . . . .
* Motivation Explanation: a list of explanations (one-one

Index Terms— Open-domain, relation extraction, deep corresponding to the experiments)

metric learning



Experiment Design: data collection

[ Task #2: EXPDESIGN ]

arXiv () gt
| PNG
Source LaTeX Paper PDF Paper Figures
(@ Data Crawling
) 4 )
This paper is about a new le What did this
reinforcement learning [....] experiment do?
In this section, we conduct s 4 lwl
ablation to show the [...] o Ju
- 2 {0}
We found that [... Q,: Why is it necessary? Annotator

) Domain-expert Annotation

?5 rma 4

Reviewer Annotator

 Multi-round Peer Discussion

1. Crawling source papers from arXiv:
 Use source LaTeX is more precise than extracting the
text from PDF.
 Make sure all papers are peer-reviewed, i.e., accepted
by well-known conferences.

2. Expert annotation:
* I|dentify all the necessary experiments in the original

paper
 Summarize what and Why.

3. Peer discussion:
 Another expert raises ambiguities (if any), e.g., necessity
of experiments, and fallacy in the annotation.




Task#2: Experiment Design

Table 12: The statistics of EXPDESIGN .

# of instances 100
# of source papers 100
ave. input context length (in words) 4,288
max input context length (in words) 9,799
min input context length (in words) 698
ave. # of input figures 2.6
max # of input figures 16.0
min # of input figures 0.0
ave. length of Experiment&Explanation list 5.7
ave. length per experiment (in words) 34.3
ave. length per explanation (in words) 27.1
max length of Experiment&Explanation list 13
max length per experiment (in words) 135
max length per explanation (in words) 89
min length of Experiment&Explanation list 2
min length per experiment (in words) 9
min length per explanation (in words) 9




Task#3: Paper Weakness

[ Task Instruction |

Given a paper, critique the weaknesses
within this research work.

-

List generation: review the paper draft, and generate a list of weaknesses

[ Paper Context ] @
Title: Metric is All You Need

Abstract: Deep learning has been |[...]
Introduction: We propose a [...]

l m‘.\" Output:
) * Paper weaknesses: multiple lists of weaknesses.

Input:
* Paper draft: the whole content of a paper (under review).

—_J

1. Missed references [...]
2. Insufficient experiments |[...
3. Missed running details [...]

—__

Weaknesses

Task #3: Paper Weakness




Task#3: Paper Weakness

Published as a conference paper at ICLR 2024

@ MUFFIN: CURATING MULTI-FACETED INSTRUC-
TIONS FOR IMPROVING INSTRUCTION-FOLLOWING

Renze Lou' Kai Zhang® Jian Xie!  Yuxuan Sun®
Janice Ahn! Hanzi Xu® YuSu® Wenpeng Yin'

The Pennsylvania State University; °The Ohio State University;
#Fudan University; *Westlake University; *Temple University
{renze.lou, wenpeng}@psu.edu

ABSTRACT

In the realm of large language models (LLMs), enhancing instruction-following
capability often involves curating expansive training data. This is achieved through
two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per
task instruction, aiming for better instruction adherence. ii) Scaling Input-Free
Tasks: Enlarging tasks, each composed of an (instruction, output) pair without
requiring a separate input anymore. However, LLMs under Scaling-Inputs tend
to be overly sensitive to inputs, leading to misinterpretation or non-cc i

with instructions. Additionally, Scaling Input- Free Tasks demands a substan»
tial number of tasks but is less effective in instruction-following when dealing
with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme
of instruction-following dataset curation. Specifically, we automatically Scale we a kn e s s e S:
Tasks per Input by diversifying these tasks with various input facets. Experimen-

Pt ek R e T T AR Mt 1. The muffin looks more like a cupcake to me.

on MUFFIN gener_ally demonstrate superior i_nstruction-follolwing capabilities com- _ . = 2 . 4 2 4

pared to thoso trained on the two aforomentioned schemes. 2. As noted previously, the dichotomy of scaling inputs vs instructions is interesting. However
T S—— like two extremes of a spectrum. This very naturally leads me to wonder whether a hybrid 1
With advancements in pre-training techniques, large language models (LLMs) can, to some extent, SomEWhat Iarge OmiSSion given it WOU|d be Very testable With the Synthetic data here.
tackle diverse unseen tasks guided by textual instructions (Radford et al., 2019: Brown et al., 2020).
Ll e ke M e Py g b g 3. All experiments use T5-3B or T5-11B. As many of the other datasets (Self-Instruct, Dolly, Alg
enhanced instruction-following capacity, has garnered increased attention in the community (Min i 3 i 3k 5

: : : : if/how the results change when fine-tuning such models. At minimum, it would be useful t

The construction of datasets is crucial in instruction-tuning (Wang et al _2023a; Zhou et al . . N . . ; .
Al g @;gf;;;;;;ggyg[gmm e T G g available) in the "Existing Systems" section of Table 1 to understand the performance drop
v.hcn amplifying the (input, output) pairs for each Sk.LM.lshm_m_a.L._ZQZZh,_Sanh_sLaL_ZQZZ. . . a & 4 A . . . .

: pd ymgt pm tm HpThemodﬂ:m:amedht:,psodtuced;mgomp;tlsforvanmlxs 4.1think there are a few errors in the baseline discussion in section 5. In particular, this sectic
mpu s under the same instruction. 0\{\/?\'61‘ 1S approach tends o‘_ren ier the model excessively . . . . ]
Fequircments (ichson & Pavick. 222 Mishry ol 20021 e gemrat s v worde' human-created (this is stated correctly in the Appendix) and Self-Instruct was produced usi
indksuboptmﬁil ltea.rmngkefﬁcnencty Lbuﬁn;e!_aL.l_)Zﬂl?_Deh_‘;’J_aL&ZQtZZ)‘id(u) ScaTllng Input-Free < « - S
asks — collecting task instructions at can be answered without additional 1nputs, e.; e
she name of the highest mountain in the ol and expanding the (msm&nhgmpmfmtgmg 5. The presentation of human evaluation was somewhat confusing and left out key details. W
airs Q&i\.ﬂg £l a].. 2,(]231]_ Xu £l a]., 2“233 espite the mtumve alignment wi juman-assistance
Ctiochves,coveing il ang ofGivers sk and siing i dny Ueis, e oput o s volunteer with only task instruction, input, and model prediction." However, MMLU is classi

'All the code and data are available at our project page: https://renzelou.github.io/Muffin/

L output
11 Input



Paper Weakness: data collection

[ Task #3: WEAKNESS J

1. Crawling source papers from OpenReview:
 We need under-review paper drafts (in PDF), along with
the reviewer’s comments.

Reviewer#1
This paper

= proposes a
open ReVlew - m + novel metric

about the [...]

Paper PDF Raw Comments

(@ Data Crawling

2. Weakness extraction:
@ e e Utilize LLMs to extract weaknesses from the raw
2. Missed reference [...]
= =[5 Unclor table . comments (keep the human text) and formulate all the

about the [...] GPT-4 . .
Raw Comments Weaknesses pOlntS as d I|St.

Reviewer#1
This paper
proposes a
novel metric

@ LLM-based Weakness Extraction

- - =) 3. Paper PDF processing:

S * Process source paper PDF into text/figures.

Paper Text

PDFFigures =)

Paper Figures

IE =

@ Input Data Processing

10



Task#4: Review Critique

Published as a conference paper at ICLR 2024

& MUFFIN: CURATING MULTI-FACETED INSTRUC-
TIONS FOR IMPROVING INSTRUCTION-FOLLOWING

Renze Lou' Kai Zhang® Jian Xie!  Yuxuan Sun®
Janice Ahn! Hanzi Xu* YuSu® Wenpeng Yin'

The Pennsylvania State University; ®The Ohio State University;

Weaknesses:
#Fudan University; *Westlake University; *Temple University 5 :
(e e 1. The muffin looks more like a cupcake to me.
Asact 2. As noted previously, the dichotomy of scaling inputs vs instructions is interesting. However

In the realm of large language models (LLMs), enhancing instruction-following
capability often involves curating expansive training data. This is achieved through . t t t . t t t . 1
two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per I k f p Th ry “y l d d h h hyb d
L e o ey IKe TWo eXIremes ot a spectrum. Inis very naturally ieads me to wonaer whetner a nyori
Tasks: ing tasks, each of an (i ion, output) pair without

requiring a separate input anymore. However, LLMs under Scaling-Inputs tend

o vty St it g it o o conpte somewhat large omission given it would be very testable with the synthetic data here. l

with instructions. Additionally, Scaling Input-Free Tasks demands a substan-
tial number of tasks but is less effective in instruction-following when dealing

o ool S Syt e anamaly S 3. All experiments use T5-3B or T5-11B. As many of the other datasets (Self-Instruct, Dolly, Al
Tasks per Input by diversifying these tasks with various input facets. Experimen-
tal results across four zero-shot benchmarks, spanning both Scaling-Inputs and

S B it o o g e o if/how the results change when fine-tuning such models. At minimum, it would be useful tc
| hermonueron available) in the "Existing Systems" section of Table 1 to understand the performance drop
e e e ey 4. 1think there are a few errors in the baseline discussion in section 5. In particular, this sectic

This known as ing, is pivotal for developing unified versatile LLMs.
Instruction-tuning, training LLMs to generate desired responses following given instructions for

St B e o human-created (this is stated correctly in the Appendix) and Self-Instruct was produced usi
The construction of datasets is crucial in instruction-tuning (Wang et al., 2023a: Zhou et al., - = A X
i st e ety e 5. The presentation of human evaluation was somewhat confusing and left out key details. W
WeLctal 2025 Wang 5151 2020 The f:;di‘iit “ﬁ‘%“;‘iﬁ"m“:“‘“ﬁm

o s o siedon Fowr:, ey et e . el il volunteer with only task instruction, input, and model prediction." However, MMLU is classi \/

requirements (Webson & Pavlick, 2022: Mishra et al., 2022a) like - - generate less than five words™,

and suboptimal learning efficiency (vison et al_2032: Dchctal 2022}, (i Scaling Input- Free
Tasks — collecting task instructions that can be answered without additional inputs, e.g., “give
the name of the highest mountain in the world", and expanding the (instruction, output) training
pairs (Wang et al 2023h: Xu ef al_2023a). Despite the intuitive alignment with human-assistance
objectives, covering a wide range of diverse tasks and aiding in daily queries, the input-free nature

C X< X

'All the code and data are available at our project page: https: //renzelou. github. io/Muffin/

output
input
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Evaluation Metrics

%) Key challenge: how to measure the overlap between two lists?

e Semantic-based score
* Information entailment score (LLM-as-judge)

13



Semantic-based score

“Soft” version of F1 score: calculate the semantic similarity among the items from both lists

predictions ground truth

1. XXX

1.YYY
2. XXX

S-Recall: (0.8+0.6+0.7) / 3 = 0.7

3. XXX 2. YYY
4, XXX 3. YYY
5. XXX

14



Semantic-based score

“Soft” version of F1 score: calculate the semantic similarity among the items from both lists

predictions ground truth

1. XXX

1.YYY
2. XXX ..

S-Precision: (0.8+0.6+0.7+0.5+0.4) / 5 = 0.6

3. XXX 2.YYY
4. XXX 3.YYY
5. XXX

14



Semantic-based score

“Soft” version of F1 score: calculate the semantic similarity among the items from both lists

predictions ground truth
1. XXX
1. YYY S-Recall: (0.8+0.6+0.7) / 3 = 0.7
2. XXX
S-Precision: (0.8+0.6+0.7+0.5+0.4) / 5 = 0.6

3. XXX 2. YYY S'F].: Z*R*P / (R+P) = 0.65

4. XXX 3.YYY

5. XXX

14



Information entailment score (LLM-as-judge)

F1 score via LLM-as-judge: use LLM as the evaluator instead of using semantic similarity.

predictions
1. XXX
ground truth Can we infer the “1. YYY”
based on the prediction list?
2. XXX
3. XXX + 1YYy ‘ o))
4. XXX
5. XXX

15



Information entailment score (LLM-as-judge)

F1 score via LLM-as-judge: use LLM as the evaluator instead of using semantic similarity.

ground truth

1.yyy | c_g!" - 1

En-Recall: (1+0+1) / 3 = 0.67

2.YYY ‘ Q", i ‘ 0 En-Precision = ...
N En-F1=...
3.yyy |mmp C!JJ! - 1
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inter-/intra list diversity

TODO: currently skip it, cuz the ITF-IDF is not from this project. also don’t have time to
introduce all the details (15 mins talk).



Performances & Results:

Table 1: Various LLMs’ performances on EQINFER task
(1,049 positive and 3,147 negative samples). “All-positive”
indicates a baseline that predicts all equations as positive.

Methods F, Prec. Rec.
All-Positive 40.00 25.00 100.00
Open-source LLMs
OLMo-7B (Groeneveld et al., 2024) 13.64 1193 1591
Mistral-7B (Jiang et al., 2023) 2845 19.28 5424
Mixtral-8x22B-MoE (Jiang et al., 2024) 4090 26.15  93.80
Qwen 2.5-72B (Qwen Team, 2024) 31.22 2628 57.40
Llama 3.1-70B (MetaAl, 2024) 33.08 22.14 65.39
Closed-source LLMs
Gemini 1.5 Pro (Anil et al., 2023) 46.74 32.05 86.27
Claude 3.5 sonnet (Anthropic, 2024a) 45.13 2948 96.18
GPT-40 (OpenAl, 2024a) 40.35 30.79 58.53
ol-preview (OpenAl, 2024b) 46.35 3143  88.27
03-mini (OpenAl, 2025) 4798 3434 79.59

15

* Asimple baseline that predicts all equations as positive:
achieves 40% F1 (due to the data distribution)

* Compared to the All-Positive baseline, the performance
superiority of the strong close-source LLMs is not significant;
the best LLM on this task only obtains 47.98%.



Performances & Results:

Model Performance Comparison
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Equation Inference

* The strongest close-source LLMs on this
task only obtained 47.98%.
* Some models are actually random guessing.



Observations:
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* For some open-source LLMs: an appropriate
context length can boost the performance;

e While not for those strong close-source LLMs.

Figure 4: The input context length scaling trend on the EQINFER task.
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Performances & Results:

Table 2: Various LLMs’ performances on the 100 instances of EXPDESIGN . The explanation generation is based on the
oracle experiments to prevent error propagation. “Copy Input” directly copies each experiment idea as the explanation.

Experiment Design Experiment Explanation
Metiods En-F;  En-Precision En-Recall S-Match ROUGE-L ROUGE-1
Copy Input — — — 40.32 22.06 25.28

Open-source LLMs
OLMo-7B (Groeneveld et al., 2024) 14.80 17.50 19.80 45.78 26.30 30.38
Mistral-7B (Jiang et al., 2023) 18.96 24.83 21.38 50.18 30.20 34.69
Mixtral-8x22B-MoE (Jiang et al., 2024) 23.16 2445 30.57 49.07 29.96 34.53
Llama 3.1-70B (MetaAl, 2024) 22.92 23.10 29.76 50.05 29.33 34.11
Qwen 2.5-72B (Qwen Team, 2024) 24.28 22.48 34.44 12 29.46 34.68

Closed-source LLMs
Gemini 1.5 Pro (Anil et al., 2023) 27.25 28.66 34.92 52.87 28.52 33.80
Claude 3.5 sonnet (Anthropic, 2024a) 27.99 2448 42.09 53.03 18.75 26.15
GPT-40 (OpenAl, 2024a) 25.03 22.25 36.59 54.79 27.54 34.31
ol-preview (OpenAl, 2024b) 30.13 28.13 38.59 58.55 29.11 36.70
03-mini (OpenAl, 2025) 30.17 28.70 37.67 54.01 20.71 29.14

* Experiment Design: LLMs consistently miss ground-truth experiments from the origin paper (low
recall), and they tend to generate more novel experiments that didn’t show in the origin paper
(low precision).

* Experiment Explanation: negative correlation between S-Match and ROUGE score. Simply
copying input can get a relatively high ROUGE --- the importance of adapting the proposed
semantic-based metrics.
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Performances & Results:

Model Performance Comparison
30.17 30.13
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Experiment Design

* LLMs consistently miss ground-truth experiments from the origin paper (low recall);
* LLMs tend to generate more novel experiments that didn’t show in the origin paper (low precision); some of

them are useful though.
17



Performances & Results:

Model Performance Comparison
58.55

601 ——- Copy Input (40.32)
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Explanation Generation

* Oracle setting: ground truth experiments are given.
* The explanation itself is easier, but we have to consider the error propagation.
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Observations:

Table 3: The human evaluation results on the novel experi-
ments suggested by LLMs. “A”, “B”, and “C” represent the
different quality level (i.e., necessity); “A” is the best level.

Positive evidence of using LLMs in assisting experiment design:

* LLMs can generate a considerable amount of novel experiments.

Models # of novel EXP INeCessity (%) * Some of them are found to be really helpful and can be treated
A B as complementary experiments with human experiments.

Gemini 1.5 Pro 59 30.59 45.76

Claude 3.5 sonnet 112 21.78 50.00

ol-preview 71 35.84 36.61
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Observations:

Table 4: The human evaluation results on LLMs’ output .
explanations of EXPDESIGN . “Acc. ratio” means how The usefulness of the proposed S-Match metric:

many model outputs are accepted by the annotator.
e Perfect correlation between the S-Match scores and the human

Models Ace. ratio evaluation score.
Llama 3.1-70B 22.93
Gemini 1.5 Pro 55.07
Claude 3.5 sonnet 61.46
GPT-40 69.72
ol-preview 76.14
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Observations:

30 1

Experiment Design (Entail-F1)
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The input context (background information) can help experiment design
(to some degree), while not for the explanation generation.




Observations:

Table 14: The figure inputs ablation of EXPDESIGN . For the maximum text input length, same as the setting in Table 2,
we use 2,000 and 3,000 words for open- and closed-source models, respectively. For the closed-source GPT-40 and GPT-4,

as they have long context window sizes, we use all the figures of each paper. While for InternVL2, we randomly select two
figures per input paper.

Experiment Design Experiment Explanation
Models En-F;  En-Precision En-Recal S-Match ROUGE-L ROUGE-1
GPT-40 25.03 22.25 36.59 58.54 29.25 35.50
w/ figures 25.39 2435 32.80 58.53 27.87 34.30
InternVL.2-26B 24.26 39.50 14.91 50.03 29.13 34.26
w/ figures 15.04 38.50 8.64 50.29 29.29 34.06

* Paper figures don’t contribute much to the performance.
* It’s hard for the current LMMs to leverage the rich multi-modal information from a scientific paper.
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Performances & Results:

Table 6: Various LLMs’ performances on the 993 instances of WEAKNESS .

22

Weakness Diversity
Methods S-F1 (%) S-Precision (%) S-Recall (%) ITF-IDF (1)
Human Review — — — 7.69
Open-source LLMs
OLMo-7B (Groeneveld et al., 2024) 43.25 40.38 47.04 2.45
Mistral-7B (Jiang et al., 2023) 42.03 43.80 40.77 1.17
Mixtral-8x22B-MoE (Jiang et al., 2024) 43.23 44.59 42.23 0.98
Llama 3.1-70B (MetaAl, 2024) 42.78 43.19 42.70 2.60
Qwen 2.5-72B (Qwen Team, 2024) 42.74 43.80 42.05 1.21
Closed-source LLMs
Gemini 1.5 Pro (Anil et al., 2023) 48.75 43.97 55.08 5.88
Claude 3.5 sonnet (Anthropic, 2024a) 47.85 41.97 56.00 3.91
GPT-40 (OpenAl, 2024a) 47.73 42.09 55.48 5.95
ol-preview (OpenAl, 2024b) 48.62 42.54 57.08 5.63
03-mini (OpenAl, 2025) 46.33 42.00 51.99 5.85
LLM Agent Framework
AI-SCI (GPT-40) (Lu et al., 2024) 45.05 40.02 51.91 2.23

* Compared with human review, most LLM-generated weaknesses are vague and

lack the necessary knowledge about some frontier research works.



Performances & Results:

Model Performance Comparison
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* Compared with human review, most LLM-generated weaknesses are vague and
18 lack the necessary knowledge about some frontier research works.



Observations:

Table 13: The ablation study about the paper tables and figures of WEAKNESS . Based on the conclusion in Table 9, we use
the “split-combine” to process the text input here (2,000 and 3,000 words context window size for open- and closed-source
models). For GPT-40, we use all the table/figure images; while for InternVL2, we randomly select two images per paper,
i.e., two random figures, two random tables, or one random figure + table.

Models S-F1 S-Precision S-Recall ITF-IDF
GPT-40 47.73 42.09 55.48 5.95
w/ tables 46.76 41.32 54.17 5.53
w/ figures 46.62 41.20 54.04 5.48
w/ tables & figures 46.58 41.17 53.98 5.36
InternVL2-26B 4191 41.02 43.28 1.48
w/ tables 40.55 40.37 42.91 1.46
w/ figures 42.88 42.10 43.76 1.46
w/ tables & figures 42.44 42.00 43.31 1.44

LMMs struggles with reasoning over information-intensive images, especially table images.
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Performances & Results:

Model Performance Comparison
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Review Critique

* Compared with human ACs, the LLMs often struggle with identifying the correct
19 reliability of the review viewpoint.
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