
Schwarz–Schur Involution: Lightspeed Differentiable Sparse Linear Solvers
Yu Wang, S. Mazdak Abulnaga, Yaël Balbastre, Bruce Fischl

Acknowledgement: Justin Solomon, Mike Taylor.

International Conference on Machine Learning 2025

Summary:
• Sparse linear system x = A−1b solved up to 1000X faster
• the first direct solver that can run interactively. x = A−1b can be: a PDE/FEM

solver, generalized deconvolution, exact Newton’s solver, deformer,
geometry solver, physics solver, spectral solver, +more

Approach: tensorize and parallelize the sparse linear solve
 to transfer GPU’s dense BLAS capacity to sparse problems

Observation: sparse solvers too slow—unnecessarily

Results

Application: AI4PDE, scientific computing, computer vision, +more

Even using a naïve prototype:
• 60~1000x faster than SciPy. 40~170x

faster than CUDA (cuDSS, cuSparse)
• taking our method 10.9 ms (resp. 220 ms)

to solve a Laplacian system (Dirichlet) on
an image of 513×513 (resp. 2561×2561)

Problem: sparse solve aka generalized deconvolution
Consider an 𝐻𝐻 × 𝑊𝑊 image with 𝑛𝑛 = 𝐻𝐻𝐻𝐻 pixels, the matrix A ∈ ℝn×n has the
Laplacian-like sparsity: A𝑖𝑖𝑖𝑖 ≠ 0 only if pixels 𝑖𝑖 and 𝑗𝑗 are adjacent in the image.
E.g., for a 9 × 5 image, the matrix A looks like:

• SciPy: 20 minutes to solve the linear system
• 0.008 seconds to invert one million 9×9 matrices removing

most pixels (9/16≈56%) as a Gaussian elimination step

Broadly Impacted Areas:

Finite element method / numerical PDEs in a nutshell:
• elliptic PDE ∇ ⋅ C x ∇𝑢𝑢 x = 0 with n x ⊺ C x ∇𝑢𝑢 x = 𝑔𝑔 x , ∀x ∈ 𝜕𝜕Ω
 i.e., Neumann boundary condition, amounts to A ← L, where L ≔ G⊺CG;
• the parabolic PDE amounts to setting A ← t ⋅ L + M
• the Helmholtz equation amounts to A ← L − 𝜅𝜅2 ⋅ M
 M: mass matrix, G: gradient; plays roles like the identity, adjacency matrices
Linear solvers realize the coefficient-to-solution map C ↦ [G⊺CG]−1b

Algorithms: “involuting” tensors 𝜶𝜶,𝜷𝜷
 —a callable module users need not to implement by themselves
• recursively collapse sub-domains by merging sub-systems: P = 𝜶𝜶 𝑖𝑖, 𝑗𝑗, ∶, ∶ , Q = 𝜶𝜶 𝑖𝑖 + 1, 𝑗𝑗, ∶, ∶
• 𝜶𝜶(𝑘𝑘) 𝑖𝑖, 𝑗𝑗, ∶, ∶ represents a (generalized) discrete Dirichlet-to-Neumann operator

• convert the observation into algorithms: tensorized representations of batched reduced systems

• divide A into tensor 𝜶𝜶(∗) ∈ ℝ
𝑊𝑊
4 ×𝐻𝐻

4×25×25, divide b into tensor 𝜷𝜷(∗) ∈ ℝ
𝑊𝑊
4 ×𝐻𝐻

4×25×1

• generalized deconvolution of spatially varying kernels for image processing, vision
• numerical optimization: exact Newton solvers made tractable on image domains
• solver/optimizer layers embedded in neural nets, (physics/geometry) solver-in-the-loop
• geometric deep learning & algorithms, shape/deformation representation
• eigenbases for spectral neural networks, spectral clustering (Shi & Malik)
• identify/reduce gaps between AI & conventional methods
• zero-shot baselines for learning-based PDE solvers, scientific ML, AI4PDE

• consider a 3 × 3 convolution kernel that is spatially varying:

Discussion: why not iterative solvers?
• cannot reuse: must restart when sequentially solve multiple A, b1 , A, b2 , … , (A, b𝑘𝑘)
• each method & parameter setting only applies to a small range of A
• struggle to deconvolute indefinite kernels such as stencils discretizing Helmholtz PDEs
• unpredictable runtime, unreliable without case-by-case user intervention
• parameters, convergence time, preconditioning (and its parameters): all depend on A

Solves PDEs
1000x faster

using NN

Image
registration
1000x faster

with NN

AI4PDE medical vision

Ours: these problems can be
solved 1000x faster without
using any learning / neural nets
(NN)—only GPUs are enough.

• v ← A u : convolution (generalized to spatially varying kernels)
• u ← A−1v : deconvolution (in the exact, generalized sense)

A𝑖𝑖𝑖𝑖 ≠ 0 only if pixels 𝑖𝑖 and
𝑗𝑗 connected by an edge

A 4097×4097 image, n=16785409 pixels, divided into a 1024×1024 array of overlapping 5×5 patches

Schur step: merge sub-systems (P, p), Q, q into (D, d)

Solving the sparse linear system A−1b : equivalent to de-convoluting an image b
with a spatially varying kernel A (rows of sparse A store the kernel)

Each pixel corresponds to a
row/column in the matrix A

	Slide Number 1

