© 9 i
"4

HARVARD
MEDICAL SCHOOL

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers
Yu Wang, S. Mazdak Abulnaga, Yaél Balbastre, Bruce Fischl

International Conference on Machine Learning 2025

Sony
Interactive
Entertainment

SONY )

Problem: sparse solve aka generalized deconvolution

Consider an H X W image with n = HW pixels, the matrix A € R™*™ has the
Laplacian-like sparsity: A;; # 0 only if pixels i and j are adjacent in the image.
E.g., fora 9 X 5 image, the matrix A looks like:
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Each pixel corresponds toa |
row/column in the matrix A
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Aij # 0 only if pixels i and
Jj connected by an edge
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Solving the sparse Ilnear system A" tb: equwalent to de convolutlng an image
with a spatially varying kernel A (rows of sparse A store the kernel)
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» consider a 3 X 3 convolution kernel that is spatially varying:
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convolution (generalized to spatially varying kernels)
deconvolution (in the exact, generalized sense)

Summary:

* Sparse linear system x = A~ 'b solved up to 1000X faster
* the first direct solver that can run interactively. x = A~'b can be: a PDE/FEM

solver, generalized deconvolution, exact Newton’s solver, deformer,
geometry solver, physics solver, spectral solver, +more

Broadly Impacted Areas:

» generalized deconvolution of spatially varying kernels for image processing, vision

* numerical optimization: exact Newton solvers made tractable on image domains

* solver/optimizer layers embedded in neural nets, (physics/geometry) solver-in-the-loop
* geometric deep learning & algorithms, shape/deformation representation

* eigenbases for spectral neural networks, spectral clustering (Shi & Malik)

* identify/reduce gaps between Al & conventional methods

Application: AI4PDE, scientific computing, computer vision, +more

Observation: sparse solvers too slow— unnecessarlly

A 4097x4097 image, n=16785409 pixels, divided into a 1024x1024 array of overlapping 5x5 patches
¢ SciPy: 20 minutes to solve the linear system

* 0.008 seconds to invert one million 9x9 matrices removing |
most pixels (9/16=56%) as a Gaussian elimination step
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| # alpha.shape is (1024,1024,9,9)

2 torch linalg.inv (alpha)
sparse matrix
4 sc:pr.sparse.linalg.spsolve (A,b) #1200 sec.

Approach: tensorize and parallelize the sparse linear solve

to transfer GPU’s dense BLAS capacity to sparse problems
* convert the observation into algorithms: tensorized representations of batched reduced systems
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+ divide A into tensor a) € R2 % , divide b into tensor ﬂ( ) e R+ "%

#0.008 sec.

zero-shot baselines for learning-based PDE solvers, scientific ML, Al4PDE
Image
registration
1000x faster
with NN

Solves PDEs
1000x faster
using NN

@ Al4PDE

Ours: these problems can be
solved 1000x faster without
using any learning / neural nets
(NN)—only GPUs are enough.
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Results

Even using a naive prototype:

o . o Example || CUDA | SciPy ours speedup
*  6071000x faster than SciPy. 40~170x 25617 || 36926 | 253318 || 220.1 | 168X 1151X
faster than CUDA (cuDSS, cuSparse) 20492 21354 | 143100 || 158.5 | 135X 903X
. 2
* taking our method 10.9 ms (resp. 220 ms) 1025 4710 | 16512 || 3645 | 129X 453X
. - 513 1036 | 2051 || 10.90 | 95.0X 188X
to solve a Laplacian system (Dirichlet) on 257 34 355 587 | 402X 6LO0X

an image of 513x513 (resp. 2561x2561)

Discussion: why not iterative solvers?

* cannot reuse: must restart when sequentially solve multiple (A, by), (A, by), ...,
* each method & parameter setting only applies to a small range of A

» struggle to deconvolute indefinite kernels such as stencils discretizing Helmholtz PDEs
* unpredictable runtime, unreliable without case-by-case user intervention

* parameters, convergence time, preconditioning (and its parameters): all depend on A
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Finite element method / numerical PDEs in a nutshell:
+ elliptic PDE V - [C(x)Vu(x)] = 0 with n(x)"[C(x)Vu(x)] = g(x), Vx € 9Q
i.e., Neumann boundary condition, amounts to A « L, where L := G'CG;
* the parabolic PDE amounts to setting A < t- L+ M
» the Helmholtz equation amountsto A « L — k%2 - M
M: mass matrix, G: gradient; plays roles like the identity, adjacency matrices
Linear solvers realize the coefficient-to-solution map C ~ [G'CG]™'b

Algorithms:

«“. .
involuting” tensors (a, 8)
—a callable module users need not to implement by themselves

* recursively collapse sub-domains by merging sub-systems: P = af[i, j, :, :], Q=a[i+ 1, j, 3, :]
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:] represents a (generalized) discrete Dirichlet-to-Neumann operator
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Schur step: merge sub-systems (P p) (Q q) |nto (D d)
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