© 9 i
"4

HARVARD
MEDICAL SCHOOL

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers
Yu Wang, S. Mazdak Abulnaga, Yaél Balbastre, Bruce Fischl

International Conference on Machine Learning 2025

Sony
Interactive
Entertainment

SONY)

Problem: sparse solve aka generalized deconvolution

Consider an H X W image with n = HW pixels, the matrix A € R™*™ has the
Laplacian-like sparsity: A;; # 0 only if pixels i and j are adjacent in the image.
E.g., fora 9 X 5 image, the matrix A looks like:
B i

m

Each pixel corresponds toa |
row/column in the matrix A

000000000

32 s EEEE EEEE

Aij # 0 only if pixels i and
Jj connected by an edge

=[]

Solving the sparse Ilnear system A" tb: equwalent to de convolutlng an image
with a spatially varying kernel A (rows of sparse A store the kernel)

o EEEEsEEEEEE e s REeE e

» consider a 3 X 3 convolution kernel that is spatially varying:

a@v)(—1,-1) o@¥(-1,0) =¥ (-1,1)
al®Y) = | sew0,—1) o (0,0) al=¥)(0,1)
a™¥) (1, 1) a(®¥)(1,0) a(®¥) (1, 1)
:l:7
o) 30D 0GB ule - bey £ 5,)

e veAu:
e ueAly

convolution (generalized to spatially varying kernels)
deconvolution (in the exact, generalized sense)

Summary:

* Sparse linear system x = A~ 'b solved up to 1000X faster
* the first direct solver that can run interactively. x = A~'b can be: a PDE/FEM

solver, generalized deconvolution, exact Newton’s solver, deformer,
geometry solver, physics solver, spectral solver, +more

Broadly Impacted Areas:

» generalized deconvolution of spatially varying kernels for image processing, vision

* numerical optimization: exact Newton solvers made tractable on image domains

* solver/optimizer layers embedded in neural nets, (physics/geometry) solver-in-the-loop
* geometric deep learning & algorithms, shape/deformation representation

* eigenbases for spectral neural networks, spectral clustering (Shi & Malik)

* identify/reduce gaps between Al & conventional methods

Application: AI4PDE, scientific computing, computer vision, +more

Observation: sparse solvers too slow— unnecessarlly

A 4097x4097 image, n=16785409 pixels, divided into a 1024x1024 array of overlapping 5x5 patches
¢ SciPy: 20 minutes to solve the linear system

* 0.008 seconds to invert one million 9x9 matrices removing |
most pixels (9/16=56%) as a Gaussian elimination step

“““““"“““““l ' |

| # alpha.shape is (1024,1024,9,9)

2 torch linalg.inv (alpha)
sparse matrix
4 sc:pr.sparse.linalg.spsolve (A,b) #1200 sec.

Approach: tensorize and parallelize the sparse linear solve

to transfer GPU’s dense BLAS capacity to sparse problems
* convert the observation into algorithms: tensorized representations of batched reduced systems

. . . Wl 25%25 W a5x1
+ divide A into tensor a) € R2 % , divide b into tensor ﬂ() e R+ "%

#0.008 sec.

zero-shot baselines for learning-based PDE solvers, scientific ML, Al4PDE
Image
registration
1000x faster
with NN

Solves PDEs
1000x faster
using NN

@ Al4PDE

Ours: these problems can be
solved 1000x faster without
using any learning / neural nets
(NN)—only GPUs are enough.

J

medical vision

Results

Even using a naive prototype:

o . o Example || CUDA | SciPy ours speedup
* 6071000x faster than SciPy. 40~170x 25617 || 36926 | 253318 || 220.1 | 168X 1151X
faster than CUDA (cuDSS, cuSparse) 20492 21354 | 143100 || 158.5 | 135X 903X
. 2
* taking our method 10.9 ms (resp. 220 ms) 1025 4710 | 16512 || 3645 | 129X 453X
. - 513 1036 | 2051 || 10.90 | 95.0X 188X
to solve a Laplacian system (Dirichlet) on 257 34 355 587 | 402X 6LO0X

an image of 513x513 (resp. 2561x2561)

Discussion: why not iterative solvers?

* cannot reuse: must restart when sequentially solve multiple (A, by), (A, by), ...,
* each method & parameter setting only applies to a small range of A

» struggle to deconvolute indefinite kernels such as stencils discretizing Helmholtz PDEs
* unpredictable runtime, unreliable without case-by-case user intervention

* parameters, convergence time, preconditioning (and its parameters): all depend on A

(A br)

Finite element method / numerical PDEs in a nutshell:
+ elliptic PDE V - [C(x)Vu(x)] = 0 with n(x)"[C(x)Vu(x)] = g(x), Vx € 9Q
i.e., Neumann boundary condition, amounts to A « L, where L := G'CG;
* the parabolic PDE amounts to setting A < t- L+ M
» the Helmholtz equation amountsto A « L — k%2 - M
M: mass matrix, G: gradient; plays roles like the identity, adjacency matrices
Linear solvers realize the coefficient-to-solution map C ~ [G'CG]™'b

Algorithms:

«“. .
involuting” tensors (a, 8)
—a callable module users need not to implement by themselves

* recursively collapse sub-domains by merging sub-systems: P = af[i, j, :, :], Q=a[i+ 1, j, 3, :]

. a(k)[i, i

......0.0..‘.0...%
o) :(4,4,25,25) —
B :(4,4,25,1) —

:(4,4,16,16) —
3(0).(4,4, 16,1) —

oooot.to—#.oooooooooooo.o.

eeeceoe
®0ceveceeccccoce

a:(2,4,24,24) —

B (2,4,24,1) —

a?:(2,2,32,32) —
B :(2,2,32,1) —

:] represents a (generalized) discrete Dirichlet-to-Neumann operator

a®:(1,2,48, 48)
B :(1,2,48,1)

—

—

.........0.0....%................:%.................
£(1,1,64,64). i

a@® .

BW:(1,1,64,

.

Schur step: merge sub-systems (P p) (Q q) |nto (D d)

@0000 @0000 @0@0@@0@@
P@ P35+Q Q A P,so+Q o Pac
Q o @ @ X :=|0x. Qs Qax A (U
® (5] Pso Psp+Qu. Qux Pss+Qu. Pse
00000 ooeom ooooooooo | P... P 0. P P.. |
Figure 4. Schur step collapses subdomains P and Q into D. P. Po u, |
P o d f e
... Puy P, Pus Pu. - v 5 Q+ C‘l] B Pst+4q _ 3,3
Ps. Pps Pp Pss Ppae Ps T A = ax X = A
P. P, P, P, P. =P |p|:=p Ps, +Qu.J Ps t 4. u;
Ps. Pss Ps Pss Pso Ps P. Pe u. |
P.. Py Po P Pe 5
Q *Q a ”Q P Z:=P. Ps+J3Q. JQxr Ps+J7Q, P
e Qe Qe Qi L2 N -
Qxe Qax Qxnp Quo| _ ax| W= [P +J7Q ‘]} W= [p +JTq]
Q. Qo Q. Q.| T g7 D (X-YW-Z) dimy_ YW
Q. Qa Qu Q a - =y v

Acknowledgement: Justin Solomon, Mike Taylor.

	Slide Number 1

