
Universal Length Generalization with Turing Programs
Kaiying Hou∗, David Brandfonbrener, Sham Kakade, Samy Jelassi†, Eran Malach†

Kempner Institute, Harvard University

Summary

Problem: Length generalization refers to the ability to

extrapolate from short training sequences to long test

sequences and is a challenge for current large language

models. Is there a recipe to achieve length generalization for

a variety of algorithmic tasks?

Solution: Turing Programs + Hard-ALiBi

▶ Turing Programs: CoT mimicking Turing machines.

At each step, we copy the content of the tape and

modify it by performing one operation.

▶ Hard-ALiBi: positional encoding similar to NoPE,

except we mask out positions that are more than a

fixed distance away.

Results:

Problem Generalization Accuracy
Addition (n+n) 50 → 100 (2×) 98%
Multiplication (n × 1) 50 → 100 (2×) 97%
Multiplication (n × 3) 50 → 100 (2×) 97%
SGD (n examples) 50 → 80 (1.6×) 95%

Turing Program

Figure: Turing Program example for simulating a Turing Machine with

scratchpad.

Hard-ALiBi

Figure: Hard-ALiBi: an additive positional encoding where the bias satisfies b(i , j) = −∞ for j ≤ i −m

and b(i , j) = 0 for j > i −m, for some hyperparameter m > 0. (Figure from Jelassi et al. 2024)

Addition

Figure: Turing Program for addition; text in

comments is not part of the input.

20 40 60 80 100 120
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HAlibi + Direct
HAlibi + Turing Program
Alibi + Turing Program
NoPE + Turing Program
RoPE + Turing Program

Figure: Comparison of positional encodings and

data formats on addition generalization. Shade =

95 % CI.

Data: Our token space is of size 24 and made of V = {0, . . . , 9,+, a, . . . , j , ∧, , , }. All the
digits are sampled uniformly as follows: we first sample the length of each operand

(between 2 and L = 50) and then independently sample each digit. We set the training

context length to 500. At test time, we evaluate our models using a sliding window.

Model: Our base model is a 150M parameter transformer with L = 12 layers, a D = 1024

hidden size, feedforward layer with a hidden dimension of 4096 and H = 16 attention

heads. The backbone of our model is based on the GPT-NeoX architecture.

More Results

40 50 60 70 80 90 100 110 120
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(n x 3) HAlibi + Turing Program
(n x 3) Alibi + Turing Program
(n x 3) NoPE + Turing Program
(n x 3) RoPE + Turing Program
(n x 3) HAlibi + Direct

Figure: Comparison of positional

encodings and data formats for

length generalization on

(n × 3)-digit multiplication

(95% CI).

40 50 60 70 80 90
Size of Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HAlibi + Direct Answer
HAlibi + Turing Program
Alibi + Turing Program
NoPE + Turing Program
RoPE + Turing Program

Figure: Length generalization

when running SGD, varying the

number of training examples.

40 60 80 100 120 140
Length of Tape

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Turing Machine 0
Turing Machine 1
Turing Machine 2
Turing Machine 3
Turing Machine 4
Turing Machine 5
Turing Machine 6
Turing Machine 7
Turing Machine 8
Turing Machine 9

Figure: Length generalization performance on 10 different randomly

generated Turing machines.

Why It Works

Intuition: In Turing Program, a task gets broken down to two

subtasks: 1. modifying the tape content at a single position and

2. copying the tape content. The modification only requires the

token at the head position and the positions where the Turing

machine state is located, so it is length-independent. Copying is

length dependent, but Jelassi et al. already showed that

Hard-ALiBi could achieve length-generalization for it.

Theorem: Let T be a Turing Machine s.t. 1) T does not

generate repeated n-grams and 2) T operates in-memory.

Then, there exists a RASP program P of size (number of lines)

O(n) s.t. for every input x without repeated n-grams, P

correctly simulates T for exp(n) steps.


	Results
	Discussion

