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Can we train models to be robust against multiple adversaries?

Can we update existing models in the face of new adversaries?
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Training Multi-Robust Models from Scratch
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Training Multi-Robust Models from Scratch

• Multiple existing techniques can 
train models robust to multiple 
attacks [1-5].
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Training Multi-Robust Models from Scratch

• Multiple existing techniques can 
train models robust to multiple 
attacks [1-5].

• If we become aware of a new attack 
after training, we have to retrain 
from scratch!
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Improvement #1: Regularization
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How can we learn robust representations that easily 
transfer to new attacks?

Theorem (Informal)

Let , mapping inputs to logits.h : ℝd → ℝc

Let .radius(h, i) = 𝔼
x
[ max

δ∈atki(x)
∥h(x + δ) − h(x)∥2]
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How can we learn robust representations that easily 
transfer to new attacks?

Theorem (Informal)

Let , mapping inputs to logits.h : ℝd → ℝc

Let .radius(h, i) = 𝔼
x
[ max

δ∈atki(x)
∥h(x + δ) − h(x)∥2]

Let  be the adversarial loss of  w.r.t attack .Li(h) h i

L1,2(h) − L(h) ≤ M ∑
i∈1,2

radius(h, i) + C .

Improvement #1: Regularization
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Proposed Regularization Term

, 

where 

LALR(h, t) = L(h, t) + λRALR(h, t)

RALR =
1
m

m

∑
i=1

max
δ∈atk(xi)

∥h(xi + δ) − h(xi)∥2
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Improvement #2: Fine-tuning with Replay

[1] Croce, Francesco, and Matthias Hein. Adversarial robustness against multiple l_p-threat models at the 
price of one and how to quickly fine-tune robust models to another threat model. ICML 2022.
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Improvement #2: Fine-tuning with Replay
• Sample an attack for each training batch: 

1. Before batch , compute running error for each attack:  

2. Sample attack  with probability
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atk ∈ atks
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∑a∈atks rerrb,a
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Improvement #2: Fine-tuning with Replay
• Sample an attack for each training batch: 

1. Before batch , compute running error for each attack:  

2. Sample attack  with probability

b rerrb,atk

atk ∈ atks
rerrb,atk

∑a∈atks rerrb,a

• Originally proposed by Croce and Hein [1] for -bounded attacks 

• We extend this approach to arbitrary adversarial attacks

ℓp
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Regularized Continual Robust Training (RCRT)
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Improved Robust Accuracy with RCRT
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Improved Robust Accuracy with RCRT

Our method:
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Improved Robust Accuracy with RCRT

Our method:

1. Reduces forgetting 
of previously seen 
attacks
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Improved Robust Accuracy with RCRT

Our method:

1. Reduces forgetting 
of previously seen 
attacks

2. Performs well on 
unseen attacks
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Improved Robust Accuracy with RCRT

Our method:

1. Reduces forgetting 
of previously seen 
attacks

2. Performs well on 
unseen attacks

3. Saves time over 
training from 
scratch (over 3x as 
fast for each time 
step)
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Conclusions and Future Work

• We demonstrate the use of fine-tuning to efficiently gain robustness 
against arbitrary attackers 

• Our theoretical results point towards simple regularization methods for 
improving robustness to seen and unseen attacks 

• Additional work is necessary to outperform existing baselines in additional 
settings and to better understand the theoretical limits of multi-attack 
training
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