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Types of Adversaries

Elastic

3 Kaufmann, Maximilian, et al. Evaluating Robustness to Unforeseen Adversarial Attacks. 2023.
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Elastic Gabor Pixel

Can we train models to be robust against multiple adversaries?

3 Kaufmann, Maximilian, et al. Evaluating Robustness to Unforeseen Adversarial Attacks. 2023.



Types of Adversaries

Elastic JPEG Gabor Pixel HSV

Can we train models to be robust against multiple adversaries?

Can we update existing models in the face of new adversaries?

3 Kaufmann, Maximilian, et al. Evaluating Robustness to Unforeseen Adversarial Attacks. 2023.



Training Multi-Robust Models from Scratch

[1] Maini et al. Adversarial robustness against the union of multiple perturbation models. ICML 2020
[2] Trameér and Boneh. Adversarial Training and Robustness for Multiple Perturbations. Neurips 2019
[3] Madaan et al. Learning to generate noise for robustness against multiple perturbations. ICML 2021
[

|

4] Croce and Hein. Provable robustness against all adversarial fp-perturbations for p > 1. ICLR 2020

5] Jiang and Singh. Ramp: Boosting adversarial robustness against multiple fp perturbations for
universal robustness. Neurips 2024

Adversarial Training

Training Attack 1 Attack 2
Data

7 ,+StAdv-Robust
Model



Training Multi-Robust Models from Scratch

- Multiple existing techniques can
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Training Multi-Robust Models from Scratch

7 ,+StAdv-Robust
Model

- Multiple existing techniques can
train models robust to multiple
attacks [1-5].

Adversarial Training

« |f we become aware of a new attack
after training, we have to retrain
from scratch!
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How can we learn robust representations that easily
transfer to new attacks?
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Improvement #1: Regularization

How can we learn robust representations that easily
transfer to new attacks?

° h(x)

Theorem (Informal)

Let h : RY > R€, mapping inputs to logits.

Let radius(h,1) = E[ max ||A(x 4+ 0) — h(x)||,].

x O€atk(x)

Let L.(h) be the adversarial loss of h w.r.t attack i.

Ly 5(h) — L(h) <M Z radius(h, i) + C.
1,2




Proposed Regularization Term

LALR(h’ 1) = L(h, 1) + ﬂRALR(h, 1),

where

RALR = —2 max ||h(x; + &) = h(x)ll
5Eatk(x)



Improvement #2: Fine-tuning with Replay
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Improvement #2: Fine-tuning with Replay

» Sample an attack for each training batch:

1. Before batch b, compute running error for each attack: rerry, 4

2. Sample attack atk € atks with probability
rerrb,atk

Ferr
zaEatks CIh,a

[1] Croce, Francesco, and Matthias Hein. Adversarial robustness against multiple |_p-threat models at the
price of one and how to quickly fine-tune robust models to another threat model. ICML 2022.
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Improvement #2: Fine-tuning with Replay

» Sample an attack for each training batch:

1. Before batch b, compute running error for each attack: rerry, 4

2. Sample attack atk € atks with probability
rerrb,atk

Ferr
zaEatks CIh,a

. Originally proposed by Croce and Hein [1] for fp-bounded attacks

» We extend this approach to arbitrary adversarial attacks

[1] Croce, Francesco, and Matthias Hein. Adversarial robustness against multiple |_p-threat models at the
price of one and how to quickly fine-tune robust models to another threat model. ICML 2022.
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Regularized Continual Robust Training (RCRT)
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Improved Robust Accuracy with RCRT
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Conclusions and Future Work

- We demonstrate the use of fine-tuning to efficiently gain robustness
against arbitrary attackers

« Our theoretical results point towards simple regularization methods for
Improving robustness to seen and unseen attacks

- Additional work is necessary to outperform existing baselines in additional
settings and to better understand the theoretical limits of multi-attack
training
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