Adapting to Linear Separable Subsets with Large-Margin in Differentially Private Learning

Erchi Wang[†], Yuqing Zhu[‡], Yu-Xiang Wang[†] [†]University of California, San Diego [‡]LinkedIn

TL;DR: We propose an *efficient* (ε, δ) -DP algorithm for learning linear classifier that adapts to the best linear separable subsets without separability assumption or margin information.

Intro & Background

(ε, δ)-DP: An algorithm $\mathcal{M}: \mathcal{X}^* \to \mathcal{O}$ satisfies (ε, δ)-differential privacy if for any dataset X', X differ by at most one point, for any $0 \subseteq \mathcal{O}$, $\Pr(\mathcal{M}(X) \in \mathcal{O}) \leq e^{\varepsilon} \Pr(\mathcal{M}(X') \in \mathcal{O}) + \delta$

Linear classifier and Margin:

$$h_w: (x, y) \to \operatorname{sign}(y\langle w, x\rangle)$$

Linear Classifier

$$\operatorname{Margin}(h_w; S) = \max \left\{ \min_{(x,y) \in S} \frac{y \langle w, x \rangle}{\|w\|}, 0 \right\} \quad \operatorname{Margin for } h_w$$

$$Margin(S) = \max_{w} Margin(h_w; S)$$

Margin for dataset S

Motivation

Margin is unstable: A single data point can significantly alter the margin

Hard for stability-based DP mechanism to work ©

"Robust Margin": real-world data is not always linearly separable, but it can become separable after removing a few "outliers".

Question: Can we adapt to "robust margin"?

Given dataset S and margin parameter $\gamma \in [0, 1]$

Margin Inliers
$$\mathcal{S}_{\mathrm{in}}(\gamma) = \{S' \subseteq S \mid \mathrm{Margin}(S') \geq \gamma\}$$

Margin Outliers $\mathcal{S}_{\mathrm{out}}(\gamma) = \{S \setminus S' \mid S' \in \mathcal{S}_{\mathrm{in}}(\gamma)\}$

Extension of the definition of Margin

Main Result

There exists an efficient (ε, δ) -DP algorithm \mathcal{M}^* , for any input dataset S, privacy budgets ε, δ satisfying $\delta \in (0,1)$ and $\varepsilon \in (0, 8 \log(1/\delta))$, with high probability, for any $S_{\text{out}} \in 2^S \text{ with } \gamma := \gamma(S \setminus S_{\text{out}}) > 0, \text{ simultaneously:}$

$$\tilde{\mathcal{R}}_{S}(\mathcal{M}^{*}(S,\varepsilon,\delta)) \leq \tilde{\mathcal{O}}\left(\frac{1}{n\gamma^{2}\min\{\varepsilon,1\}} + \frac{|S_{\text{out}}|}{\gamma n}\right) \wedge 1$$

$$\mathcal{R}_{D}(\mathcal{M}^{*}(S,\varepsilon,\delta)) \leq \tilde{\mathcal{O}}\left(\frac{1}{n\gamma^{2}\min\{\varepsilon,1\}} + \frac{|S_{\text{out}}|}{\gamma n}\right) \wedge 1$$

 $\mathcal{ar{R}}_S(\cdot)$ averaged empirical zero-one loss

 $\mathcal{R}_D(\cdot)$ population zero-one loss

(Logarithmic factors are ignored)

- Doesn't need data to be separable
- Dimension-independent rate
- No needing to know which S_{out} to remove

Comparison with Related Work (Population 0-1 Risk)

Source	Realizable case	Agnostic case	poly-time?
[NUZ20] Thm. 6, Thm. 11	$rac{1}{n\gamma^2arepsilon}$	NA	✓
[BMS22] Thm. 3.1	$\frac{1}{n\gamma^2\varepsilon}$	$\frac{1}{n\gamma^2\varepsilon} + \min_{w \in \mathcal{B}^d(1)} \left(\tilde{\mathcal{R}}_S^{\gamma}(w) + \sqrt{\left(\frac{1}{n^2\gamma^2} + \frac{1}{n}\right) \cdot \tilde{\mathcal{R}}_S^{\gamma}(w)} \right)$	×
[BMS22] Thm. 3.2	$rac{1}{n^{1/2}\gammaarepsilon^{1/2}}$	$rac{1}{n^{1/2}\gammaarepsilon^{1/2}} + \min_{w\in\mathcal{B}^d(1)} ilde{L}_S^\gamma(w)$	✓
Ours	$\frac{1}{n\gamma^2\varepsilon}$	$\min_{\substack{S_{\text{out}} \subset S \\ \gamma := \text{margin}(S \setminus S_{\text{out}})}} \left(\frac{ S_{\text{out}} }{n\gamma} + \frac{1}{n\gamma^2 \varepsilon} \right)$	✓

- Recover realizable case in [NUZ20]
- \sqrt{n} improvement over Thm 3.2 [BMS22] if $|S_{\text{out}}| = o(\sqrt{n})$

Reference:

[NUZ20] Lê Nguyễn, Huy, Jonathan Ullman, and Lydia Zakynthinou. "Efficient private algorithms for learning large-margin halfspaces." ALT 2020

[BMS22] Bassily, Raef, Mehryar Mohri, and Ananda Theertha Suresh. "Differentially private learning with margin guarantees." Neurips 2022

Algorithms

Main algorithm DP Adaptive Margin consists of two parts:

- Base Algorithm A_{ILGD} Random projection based noisy GD [NUZ20, BMS22]
- Hyperparameter selector A_{Iter}
 - (1) Run \mathcal{A}_{ILGD} for each hyperparameter configuration
- (2) report the best configuration through noisy zero-one loss

DP Adaptive Margin $\mathcal{M}^*(S, \varepsilon, \delta)$

- Input: dataset $S = \{\mathbf{x}_i, y_i\}_{i=1}^n$, Privacy budget ε, δ
- 2 **Set:** Margin grid $\Gamma = \{\frac{1}{n}, \frac{2}{n}, \frac{4}{n}, ..., \frac{2^{\lfloor \log_2 n \rfloor}}{n}, 1\},$ GDP budget $\mu = \frac{\varepsilon}{2\sqrt{2\log(1/\delta)}}$,
 - failure probability for JL projection β
- 3 Initialize hyperparameter set $\Theta = \{\phi\} \triangleright empty \ set$
- 4 for $\gamma \in \Gamma$ do

- 8 $(\tilde{\mathbf{w}}_{\mathrm{out}}, \gamma_{\mathrm{out}}, \Phi_{\gamma_{\mathrm{out}}}) = \mathcal{A}_{\mathsf{lter}}(\mathcal{A}_{\mathsf{JLGD}}(\cdot), \Theta, S, \mu)$
- 9 Output: $(\tilde{\mathbf{w}}_{\mathrm{out}}, \gamma_{\mathrm{out}}, \Phi_{\gamma_{\mathrm{out}}})$

Proof Sketch

TL;DR JL projection reduces dimensionality, and hyperparameter search adapts to the margin parameter, which is coupled with the reduced dimension.

- JL Projection preserves margin with high probability
- Error decomposition using margin Inlier/Outliers

$$\hat{L}_c(\mathbf{w};S) \leq \hat{L}_c(\mathbf{w}^*;S) + \mathrm{EER}$$

$$\leq \hat{L}_c(\mathring{\mathbf{w}}_{\mathrm{in}};S_{\mathrm{in}}(\gamma)) + \hat{L}_c(\mathring{\mathbf{w}}_{\mathrm{in}};S_{\mathrm{out}}(\gamma)) + \mathrm{EER}$$

$$\leq \mathcal{O}(|S_{\mathrm{out}}(\gamma)|/c) + \mathrm{EER}$$

 Adapting to unknown margin via geometric grid Construct geometric grid $\Gamma = \{\frac{1}{n}, \frac{2}{n}, ..., \frac{2^{\lfloor \log_2 n \rfloor}}{n}, 1\}$:

$$\tilde{\mathcal{R}}_{S}(\mathcal{M}^{*}(\varepsilon, \delta, S)) \lesssim \min_{\substack{\gamma \in \Gamma \\ S_{\text{out}} \in \mathcal{S}_{\text{out}}(\gamma)}} \left(\frac{|S_{\text{out}}|}{n\gamma} + \frac{1}{n\gamma^{2}\varepsilon}\right) \\
\leq \min_{\substack{S_{\text{out}} \subset S \\ \gamma := \gamma(S \setminus S_{\text{out}}) > 0}} \mathcal{O}\left(\frac{|S_{\text{out}}|}{n\gamma} + \frac{1}{n\gamma^{2}\varepsilon}\right)$$