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Motivation

* Increasing context length allows LLM to understand longer documents and videos.

- KV cache in LLM inference stores past attention to avoid recomputation.
- KV cache becomes a major bottleneck at the decode phase in long contexts.
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Existing KV cache compression methods fail to match the accuracy of oracle top-k attention (Exact-TopK)

Observation

Maximum sequence length: 25000, the number of unique top-k indices: 1200.

We realize that dynamic KV token selection can be applied on the filtered KV token set after permanent KV token

eviction.
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RocketKV: Two Stage KV Cache Compression

Two-stage KV cache compression for decode acceleration.
Input prompt

The sky is blue and clear today, what is thecolor of the sky 7
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First Stage: Permanent
partial KV cache eviction
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RocketKV enables flexible integration of a wide range of KV cache compression techniques at each stage.

First stage (SnapKV):
Removes coarse-grain KV tokens with low importance.

Second stage (Hybrid Sparse Attention):
Removes fine-grain KV tokens from the remaining ones.

Generated tokens one by one
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Second Stage: Dynamic partial KV
token selection at each decode step

NVIDIA.



Hybrid Sparse Attention (HSA)

- Step 1: Token Grouping & Auxiliary Storage

- Group key tokens into pages and store per-page Kmax/Kmin along the head dimension to enable efficient lookup, updating
them with each new key token. Canuance dimention

- Step 2: Attention Score Approximation
- For each query, select top-k71 head positions by magnitude, | 1 1 1 |
use Kmax/Kmin with selected g to estimate max attention scores Page 1 Page 2 Page 3 Page 4
per page and select fop-k2 pages along the sequence dimension.
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Multi-Turn Scenario

- Challenge in Multi-Turn Decoding
- Permanent KV eviction underperforms as important tokens can differ across queries.

- RocketKV-MT Solution

- Retains unselected KV tokens for future turns, but restricts dynamic selection to the filtered set, saving memory traffic
without reducing storage.
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RocketKV automatically adjusts compression in each stage based on the overall compression target.

Adaptive Compression Decomposition

In HSA, compression is further decomposed across head and sequence dimension.

For compression ratio of ¢, we define a split factor r, allocating c' for the first stage and c!'™ for the second stage,
where 0 <r<7andr=min(0.2 + 0.06 * log,(c), 0.8).

Example: Compression ratio = 64X

Head dimension

r=0.2 + 0.06 * log,(64) = 0.56

—> 64056 = 10.3 and 64(1-056) = 6.2

Sequence dimension

2.1X at head dimension

10.3X by 1st stage
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Experimental Results-Accuracy

RocketKV achieves up to 400X KV compression while maintaining accuracy comparable to full KV cache
attention across various models and datasets.

RocketKV outperforms all SOTA methods, especially in lower token budgets (Up to 90%).
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Experimental Results-Accuracy (Multi-Turn)

- RocketKV underperforms Exact-TopK due to early KV evictions, but RocketkKV-MT retains important tokens and
matches Exact-TopK accuracy across all budgets.
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Experimental Results-Efficiency

- By running on A100, RocketKYV delivers up to 3.7X end-to-end speedup and 32.6% peak memory reduction
during decoding phase.
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Conclusion

Training-Free Compression: RocketKV reduces KV cache size without retraining, targeting decode-phase
bottlenecks through two stage compression.

High Efficiency: RocketKV achieves up to 400X compression, and end-to-end 3.7X speedup, and 32.6%
memory savings with minimal accuracy loss.

Multi-Turn Support: RocketKV-MT extends the proposed method to multi-turn tasks.
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