

Stable Offline Value Function Learning with Bisimulation-based Representations

Brahma S. Pavse

Yudong Chen

Qiaomin Xie

Josiah P. Hanna

Paper:

University of Wisconsin — Madison pavse@wisc.edu

If π_e were deployed, how well would it perform?

Desiderata of an OPE algorithm:

- 1) accurate
- 2) convergent prediction

Main Contribution

Desiderata of an OPE algorithm:

- 1) accurate
- 2) convergent prediction

Main Contribution

Desiderata of an OPE algorithm:

- 1) accurate
- 2) convergent prediction

Main Contribution: Bisimulation-based Representation learning for OPE

Shaping state-action features with bisimulation-based representation learning before feeding into LSPE can lead to convergent OPE predictions.

Representation Pre-Training Phase

• Builds upon Kernel Similarity Metric (KSMe) [1].

- Builds upon Kernel Similarity Metric (KSMe) [1].
- KROPE similarity metric (short-term + long-term similarity):

$$k^{\pi_e}(s_1, a_1; s_2, a_2) := 1 - \frac{|r(s_1, a_1) - r(s_2, a_2)|}{|r_{\text{max}} - r_{\text{min}}|} + \gamma \mathbb{E}_{a_1' \sim \pi_e(s_1'), a_2' \sim \pi_e(s_2')} [k_e^{\pi}(s_1', a_1'; s_2', a_2')]$$

- Builds upon Kernel Similarity Metric (KSMe) [1].
- KROPE similarity metric (short-term + long-term similarity):

$$k^{\pi_e}(s_1, a_1; s_2, a_2) := 1 - \frac{|r(s_1, a_1) - r(s_2, a_2)|}{|r_{\max} - r_{\min}|} + \gamma \mathbb{E}_{a'_1 \sim \pi_e(s'_1), a'_2 \sim \pi_e(s'_2)} [k_e^{\pi}(s'_1, a'_1; s'_2, a'_2)]$$

- Builds upon Kernel Similarity Metric (KSMe) [1].
- KROPE similarity metric (short-term + long-term similarity):

$$k^{\pi_e}(s_1, a_1; s_2, a_2) := 1 - \frac{|r(s_1, a_1) - r(s_2, a_2)|}{|r_{\text{max}} - r_{\text{min}}|} + \gamma \mathbb{E}_{a_1' \sim \pi_e(s_1'), a_2' \sim \pi_e(s_2')} [k_e^{\pi}(s_1', a_1'; s_2', a_2')]$$

- Builds upon Kernel Similarity Metric (KSMe) [1].
- KROPE similarity metric (short-term + long-term similarity):

$$k^{\pi_e}(s_1, a_1; s_2, a_2) := 1 - \frac{|r(s_1, a_1) - r(s_2, a_2)|}{|r_{\text{max}} - r_{\text{min}}|} + \gamma \mathbb{E}_{a_1' \sim \pi_e(s_1'), a_2' \sim \pi_e(s_2')} [k_e^{\pi}(s_1', a_1'; s_2', a_2')]$$

• State-action pairs that are similar under this metric have similar q^{π_e} values.

- Builds upon Kernel Similarity Metric (KSMe) [1].
- KROPE similarity metric (short-term + long-term similarity):

$$k^{\pi_e}(s_1, a_1; s_2, a_2) := 1 - \frac{|r(s_1, a_1) - r(s_2, a_2)|}{|r_{\text{max}} - r_{\text{min}}|} + \gamma \mathbb{E}_{a_1' \sim \pi_e(s_1'), a_2' \sim \pi_e(s_2')} [k_e^{\pi}(s_1', a_1'; s_2', a_2')]$$

- State-action pairs that are similar under this metric have similar q^{π_e} values.
- Under function approximation, learn features: $k^{\pi_e}(s_1, a_1; s_2, a_2) = \phi(s_1, a_1)^{\top} \phi(s_2, a_2)$

^{1.} Castro et al. 2023. A Kernel Perspective on Behavioural Metrics for Markov Decision Processes.

$$\mathbb{E}_{\mathcal{D}}[\Phi\Phi^{\top}] = \mathbb{E}_{\mathcal{D}}[K_1] + \gamma \mathbb{E}_{\mathcal{D},\pi_e}[P^{\pi_e}\Phi(P^{\pi_e}\Phi)^{\top}]$$

$$\mathbb{E}_{\mathcal{D}}[\Phi\Phi^{\top}] = \mathbb{E}_{\mathcal{D}}[K_1] + \gamma \mathbb{E}_{\mathcal{D},\pi_e}[P^{\pi_e}\Phi(P^{\pi_e}\Phi)^{\top}]$$

Theorem 1: LSPE will converge to its fixed point solution.

$$\mathbb{E}_{\mathcal{D}}[\Phi\Phi^{\top}] = \mathbb{E}_{\mathcal{D}}[K_1] + \gamma \mathbb{E}_{\mathcal{D},\pi_e}[P^{\pi_e}\Phi(P^{\pi_e}\Phi)^{\top}]$$

Theorem 1: LSPE will converge to its fixed point solution.

Theorem 2: KROPE state-action features are Bellman Complete.

	Algorithm							
Dataset (DMC)	FQE	BCRL+EXP	BCRL	BEER	DR3	DBC	ROPE	KROPE (ours)
CartPoleSwingUp	Div.	2.0 ± 1.6	2.2 ± 0.8	Div.	0.9 ± 0.0	Div.	0.2 ± 0.1	0.0 ± 0.0
CheetahRun	0.0 ± 0.0	0.3 ± 0.2	0.8 ± 0.3	0.0 ± 0.0	0.4 ± 0.0	Div.	Div.	0.0 ± 0.0
FingerEasy	Div.	0.6 ± 0.1	0.8 ± 0.2	Div.	0.9 ± 0.0	Div.	0.1 ± 0.0	0.6 ± 0.0
WalkerStand	0.0 ± 0.0	0.2 ± 0.2	0.2 ± 0.1	1.9 ± 3.6	0.1 ± 0.0	Div.	0.2 ± 0.0	0.0 ± 0.0
Dataset (D4RL)	FQE	BCRL+EXP	BCRL	BEER	DR3	DBC	ROPE	KROPE (ours)
cheetah random	0.9 ± 0.0	Div.	Div.	0.9 ± 0.0	0.9 ± 0.0	0.9 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
cheetah medium	Div.	Div.	0.2 ± 0.2	Div.	Div.	Div.	0.0 ± 0.0	0.0 ± 0.0
cheetah med-expert	Div.	0.2 ± 0.1	0.3 ± 0.1	Div.	Div.	Div.	0.1 ± 0.0	0.0 ± 0.0
hopper random	Div.	Div.	Div.	Div.	0.8 ± 0.0	Div.	Div.	0.1 ± 0.0
hopper medium	Div.	Div.	Div.	Div.	Div.	Div.	Div.	Div.
hopper med-expert	Div.	Div.	Div.	Div.	0.6 ± 0.0	Div.	0.0 ± 0.0	0.0 ± 0.0
walker random	Div.	Div.	Div.	Div.	1.0 ± 0.0	Div.	Div.	0.5 ± 0.1
walker medium	Div.	Div.	Div.	Div.	Div.	Div.	Div.	Div.
walker med-expert	Div.	1.3 ± 0.4	2.6 ± 2.1	Div.	6.6 ± 11.6	Div.	0.1 ± 0.0	Div.

Lower OPE error than 1) other bisimulation, 2) model-based, and 3) co-adaptation based methods

Robust across hyperparameters

				Al	gorithm			
Dataset (DMC)	FQE	BCRL+EXP	BCRL	BEER	DR3	DBC	ROPE	KROPE (ours)
CartPoleSwingUp	Div.	2.0 ± 1.6	2.2 ± 0.8	Div.	0.9 ± 0.0	Div.	0.2 ± 0.1	0.0 ± 0.0
CheetahRun	0.0 ± 0.0	0.3 ± 0.2	0.8 ± 0.3	$\boldsymbol{0.0\pm0.0}$	0.4 ± 0.0	Div.	Div.	0.0 ± 0.0
FingerEasy	Div.	0.6 ± 0.1	0.8 ± 0.2	Div.	0.9 ± 0.0	Div.	0.1 ± 0.0	0.6 ± 0.0
WalkerStand	0.0 ± 0.0	0.2 ± 0.2	0.2 ± 0.1	1.9 ± 3.6	0.1 ± 0.0	Div.	0.2 ± 0.0	0.0 ± 0.0
Dataset (D4RL)	FQE	BCRL+EXP	BCRL	BEER	DR3	DBC	ROPE	KROPE (ours)
cheetah random	0.9 ± 0.0	Div.	Div.	0.9 ± 0.0	0.9 ± 0.0	0.9 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
cheetah medium	Div.	Div.	0.2 ± 0.2	Div.	Div.	Div.	0.0 ± 0.0	0.0 ± 0.0
cheetah med-expert	Div.	0.2 ± 0.1	0.3 ± 0.1	Div.	Div.	Div.	0.1 ± 0.0	0.0 ± 0.0
hopper random	Div.	Div.	Div.	Div.	0.8 ± 0.0	Div.	Div.	0.1 ± 0.0
hopper medium	Div.	Div.	Div.	Div.	Div.	Div.	Div.	Div.
hopper med-expert	Div.	Div.	Div.	Div.	0.6 ± 0.0	Div.	0.0 ± 0.0	0.0 ± 0.0
walker random	Div.	Div.	Div.	Div.	1.0 ± 0.0	Div.	Div.	0.5 ± 0.1
walker medium	Div.	Div.	Div.	Div.	Div.	Div.	Div.	Div.
walker med-expert	Div.	1.3 ± 0.4	2.6 ± 2.1	Div.	6.6 ± 11.6	Div.	0.1 ± 0.0	Div.

Lower OPE error than 1) other bisimulation, 2) model-based, and 3) co-adaptation based methods

Robust across hyperparameters

				Al	gorithm			
Dataset (DMC)	FQE	BCRL+EXP	BCRL	BEER	DR3	DBC	ROPE	KROPE (ours)
CartPoleSwingUp	Div.	2.0 ± 1.6	2.2 ± 0.8	Div.	0.9 ± 0.0	Div.	0.2 ± 0.1	0.0 ± 0.0
CheetahRun	0.0 ± 0.0	0.3 ± 0.2	0.8 ± 0.3	0.0 ± 0.0	0.4 ± 0.0	Div.	Div.	0.0 ± 0.0
FingerEasy	Div.	0.6 ± 0.1	0.8 ± 0.2	Div.	0.9 ± 0.0	Div.	0.1 ± 0.0	0.6 ± 0.0
WalkerStand	0.0 ± 0.0	0.2 ± 0.2	0.2 ± 0.1	1.9 ± 3.6	0.1 ± 0.0	Div.	0.2 ± 0.0	0.0 ± 0.0
Dataset (D4RL)	FQE	BCRL+EXP	BCRL	BEER	DR3	DBC	ROPE	KROPE (ours)
cheetah random	0.9 ± 0.0	Div.	Div.	0.9 ± 0.0	0.9 ± 0.0	0.9 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
cheetah medium	Div.	Div.	0.2 ± 0.2	Div.	Div.	Div.	0.0 ± 0.0	0.0 ± 0.0
cheetah med-expert	Div.	0.2 ± 0.1	0.3 ± 0.1	Div.	Div.	Div.	0.1 ± 0.0	0.0 ± 0.0
hopper random	Div.	Div.	Div.	Div.	0.8 ± 0.0	Div.	Div.	0.1 ± 0.0
hopper medium	Div.	Div.	Div.	Div.	Div.	Div.	Div.	Div.
hopper med-expert	Div.	Div.	Div.	Div.	0.6 ± 0.0	Div.	0.0 ± 0.0	0.0 ± 0.0
walker random	Div.	Div.	Div.	Div.	1.0 ± 0.0	Div.	Div.	0.5 ± 0.1
walker medium	Div.	Div.	Div.	Div.	Div.	Div.	Div.	Div.
walker med-expert	Div.	1.3 ± 0.4	2.6 ± 2.1	Div.	6.6 ± 11.6	Div.	0.1 ± 0.0	Div.

Lower OPE error than 1) other bisimulation, 2) model-based, and 3) co-adaptation based methods

Divergence analysis:
representation learning
vs. direct value
function learning?

• A theoretical understanding of the benefits of bisimulation-based representations for stable offline policy evaluation.

- A theoretical understanding of the benefits of bisimulation-based representations for stable offline policy evaluation.
- An empirical analysis showing improved OPE accuracy and hyperparameter robustness.

- A theoretical understanding of the benefits of bisimulation-based representations for stable offline policy evaluation.
- An empirical analysis showing improved OPE accuracy and hyperparameter robustness.
- A better understanding of when bootstrapping-based representation learning may **converge** in settings where value function-based bootstrapping may diverge.

Thank you!

Brahma S. Pavse

Yudong Chen

Qiaomin Xie

Josiah P. Hanna

Paper:

University of Wisconsin — Madison

pavse@wisc.edu