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We present the Directly Forecasting Belief Transformer (DFBT) for delayed RL, which can ef-
fectively reduce the compounding errors and improve performance. Specifically,

= We present DFBT, a novel directly forecasting belief method that effectively addresses
compounding errors in recursively generated belief.

= We propose DFBT-SAC, a novel delayed RL method that further improves the learning
efficiency via multi-step bootstrapping on the DFBT.

= We theoretically demonstrate that our DFBT significantly reduces compounding errors
compared to the existing recursively forecasting belief approach.

= We empirically demonstrate that our DFBT method effectively forecasts state sequences
with significantly higher prediction accuracy compared to baselines.

= We empirically show that our DFBT-SAC outperforms SOTAs in terms of sample efficiency
and performance on the MuJoCo benchmark.

Background

A delay-free RL problem is formalized as an MDP represented as (S, A, P, R, p,v), where S is the
state space, A is the action space, P : § x A x S — [0, 1] is the dynamic function, R : S x A — R
is the reward function, p is the initial state distribution, and v € (0, 1) is the discount factor.

A delayed RL problem can be formalized as an augmented MDP. For instance, a delayed RL prob-
lem with constant delays A represented as (X, A, Pa, Ra, pa, ), where

= Augmented state space X := S x A%

= Action space A

Delayed dynamic Pa(ze1|ze, ar) := Psi—at1|si—as ar—a)a, (@) T157" Oa,. (a)_;)
Delayed reward function Ra (@, ;) := Eg,~b(-lz:) [R(5¢, ar)];

Initial augmented state distribution pa = /)HiA:1 da_,
Discount factor v € (0, 1)
Belief representation b : X x S — [0, 1]

Research Problem

Specifically, belief representation is defined as follows:

A1
b(s¢|xe) = /A H P(st—avit1|St—ati r—ayi)dsi—ayit1.
S% =0

The belief representation can be viewed as the recursive forward prediction of the dynamics P.
With the belief representation, the agent can directly learn in the original state space S.

However, the recursive process is evidently affected by the error accumulation of the approxi-
mate dynamic function across A steps.

The compounding errors grow exponentially with the delays A. This fundamental limitation of
such recursive methodology for belief forecasting leads to significant performance degradation,
especially in environments with long-delayed signals.

Code: https://github.com/QingyuanWuNothing/DFBT
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Figure 1. Pipeline of DFBT-SAC.

Forecasted State

Given sub-trajectory with A timesteps {s;- A+, t— A+, Tt—A+i}z’A:0- We reform the representation
of the augmented state to A tokens for sequence modeling: xEOke“S = {St_A, QGt_A1i) Tt—A+i}Z~A:T)1-
Then, DFBT predicts the unobserved A states {s;_ a1}, via autoregressive modeling with loss:

=1

A
Vo [Z [— log béi)(st—A+i|xzt€Okens)]] : (1)

where bg)(~|xt) represents the i-th prediction. The critic of DFBT-SAC is multi-step bootstrapped
on the states predicted by the DFBT. Specifically, the critic @, parameterized by ¢ is updated via:

Vi B (Qu(St—n, ar—n) — Y)Z] ; (2)

where N-step (N < A) temporal difference target Y is defined as:

N-1
Y := Z Vravi + N ] ) [Q(st—atrn,a) +logm(al§i—ain)]-
i=0 arvm (|84 _ALN

. N
St—A4+N ~b§ ) (-lafokens)

Main Theoretical Results

Performance Difference of Recursively Forecasting Belief

[Theorem 5.5] For the delay—_free policy m and the delayed policy ma. Given any z; € X, the
performance difference 1"*““™"“¢(z;) of the recursively forecasting belief by can be bounded as
follows, respectively. For deterministic delays A, we have

. 1 — L A
|[recurSl\/e(xt)| < |[Ku6(xt)| + LV ﬁép
\_\/P—/

compounding errors

For stochastic delays 6 ~ da(+), we have

. 1 — B’
‘Irecurswe(xt” S E |[§rue(l,t)| + LV P .
d~da () 1—-1Lp
—_——

compounding errors
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Main Experimental Results

Belief Errors Comparison
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Figure 2. Belief errors comparison.

Performance Comparison

The best performance is underlined, the best belief-based method is in red.

Table 1. Performance on MuJoCo with Deterministic Delays.

Task Delays Augmentation-based Belief-based

A-SAC BPQL ADRL DATS  D-Dreamer D-SAC DFBT-SAC (ours)

HalfCheetah-v2 8 0.1010.01  0.404004 0.441003 | 0.084001  0.08:0.01  0.1210.06 0.3510.12

32 0.02+0.02 0.401003 0.2610.04 | 0.1120.04  0.0810.00  0.08+0.02 0.42.40.03

128 | 0.044006 0.0840.13 0.144002 | 0.104008  0.154005  0.0940.04 0.4140.03

Hopper-v2 8 0.614031 0.874009 0.9540.16 | 0414031  0.114901  0.164005 0.77+0.18

32 0114002 0.894014 0.731020 | 0.074004  0.114905  0.11i0.01 0.68+0.20

Walker2d-v2 8 0.441026 1.071002 0.971010 | 0.132005  0.111006  0.09+0.05 0.99+0.03

32 0.104002 0.374025 0.1640.08 | 0.024003  0.084005  0.084+0.02 0.64+0.10

128 | 0.06+0.00 0.07+0.03 0.08:0.01 | 0.024002  0.084005  0.11+0.06 0.4010.08

Table 2. Performance on MuJoCo with Stochastic Delays.

Task Delays Augmentation-based Belief-based

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

HalfCheetah-v2 | U(1,8) |0.094001 0.214007 0.171007 | 0.094003  0.021001  0.0310.01 0.37+0.12

U(1,128) | 0.01001 0.031003 0.154002 | 0.164003  0.16+000  0.02+0.00 0.3940.04

Hopper-v2 U(1,8) | 0171005 0.204004 0.184004 | 0.044001  0.074005  0.1440.04 0.8610.18

U(1,128) | 0.0310.01  0.041001  0.0410.02 | 0.054000  0.034001  0.03+0.00 0.14+0.01

Walker2d-v2 U(1,8) |0.364024 04040320 0414015 | 0.070001  0.074005  0.1240.04 1.1140.10

U(1,32) | 0.124003 0.161004 0.111005 | 0.094004  0.121004  0.0510.02 0.67+0.15

Correspondence to: chao.huang@soton.ac.uk
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