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| Why Activation Sparsity!?

The rise of LLMs bring about serious issues of efficiency.

®  There have been an exponential increase in the energy consumption of LLMs in recent years.

®  With a similar numerical scale of neurons, brain consumes significantly less energy and shorter response time.

m  Activation sparsity is one of the most important properties that cause such low energy consumption.
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Activation Sparsity in LLMs

Similar to brains, LLMs also prevalently have activation sparsity.

m  Definition: considerable zero or negligible elements in activation outputs, corresponding to certain
model parameters (i.e., FFN neurons), have a weak impact on LLM outputs given a specific input

m  Activation sparsity intrinsically exists in ReLU, but can also be found in mainstream SiLU activation.
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“Neurons” and activation sparsity in FFN

Activation sparsity in T5 &ViT (ReLU)

Li, Zonglin, et al. “The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers.” The Eleventh International Conference on Learning Representations (2022).

Zhang, Zhengyan, et al. "ReLU? Wins: Discovering Efficient Activation Functions for Sparse LLMs." arXiv preprint arXiv:2402.03804 (2024).

Activation sparsity in LLaMA2 (SiLU)



Application of Activation Sparsity

What does an LLM with high activation sparsity can provide?
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Powerinfer-2, by utilizing SSD accelerates

activation  sparsity, can run
sparsified Mixtral-47B on smart
with up to 27.8x

speedup compared to llama.cpp

phones

training through
MoE-dense conversions, utilizing
the activation sparsity during the

whole training procedure

OpenAl partly makes the behaviors
of GPT-2 interpretable by prompting
GPT-4 to analyze the activation

patterns of neurons
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Measurement of Activation Sparsity

Sparsing Law: A comprehensive quantitative study on activation sparsity.

QIl: How can activation sparsity be measured “better’™?

= Sparsity Ratio: the average ratio of weakly-contributed neurons in FFNs
= Activation Ratio: | — Sparsity Ratio

m The key responsibility of a sparsity metric: determining which neurons at each layer contribute
weakly to the model output given specific inputs

applicable to different activation functions

(e.g., ReLU, SiLU, GELU)

Generalizable

a “good” metric for

activation sparsity
better trade-off between sparsity and performance

Performance-Friendly
(i.e., better performance at the same sparsity ratio)



Measurement of Activation Sparsity

CETT-PPL-1%: A better metric for activation sparsity.

m CETT:Apply the same relative output error to each layer after weakly-activated neurons are
pruned (each layer can have different sparsity ratios and activation thresholds)

s CETT can always achieve better trade-off between performance and sparsity than FAT-
€ (i.e., the same threshold for each layer) and Top-k (i.e., the same sparsity ratio for each layer)

m CETT-PPL-1%:The final sparsity metric based on CETT, when the validation perplexity (PPL)
raises by just 1% with weakly-activated neurons skipped in computation
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Influential Factors of Activation Sparsity

Sparsing Law: A comprehensive quantitative study on activation sparsity.

Q2: How is activation sparsity quantitatively affected by

the model architecture and training process!?
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Influential Factors of Activation Sparsity

Activation function and the amount of training data.
m The activation ratio (CETT-PPL-1%) varies in different ways under different activation functions.

m RelLU: monotonously decreasing logspace power-law AReru (D) — exp(—cDa T b) + Ap
4
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Influential Factors of Activation Sparsity

Width-depth ratio.

Given the same parameter scale, the activation ratio linearly increases with the width-
depth ratio under a bottleneck (i.e., deeper models are sparser)

However, an extreme depth can cause training instability and harm performance, and the best
performance exists within a “best interval”

Thereby, the best width-depth ratio falls on the left point of the best interval
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Influential Factors of Activation Sparsity

Parameter scale.

= Given similar width-depth ratios, the limit of activation sparsity is weakly correlated to the

parameter scale of LLMs

m  Some possible explanation: neuron specialization is also insensitive to the parameter scale
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The limit activation ratio is weakly On multiple datasets, the distribution
correlated to the parameter scale  patterns of neuron activation frequencies

for both RelLU and SiLU.

are similar across different scales.
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Approach towards Higher Activation Sparsity

Approach towards more sparsely activated LLM.

= Takeaway: Use ReLU as the activation function with a larger amount of pre-training data,

and a small width-depth ratio within the interval ensuring the training stability.

m Validation: 2.4B RelLU-activated LLM, 800B training data — 6.48% limit activation ratio, 4.1 X

speedup with Powerlinfer

Song, Yixin, et al. "Powerinfer: Fast large language model serving with a consumer-grade gpu." Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. 2024.
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