

A Theoretical Framework For Overfitting In Energy-based Modeling

Giovanni Catania, Aurélien Decelle, Cyril Furtlehner, Beatriz Seoane

Universidad Complutense Madrid (ES)

International Conference on Machine Learning, 2025

Motivation

Study the impact of the amount data in the training of Energy-Based Models (EBMs) and how overfitting emerges when data is limited

In generative models, overfitting occurs when the model "memorizes" the training data instead of learning the underlying data distribution.

- poor diversity in generated samples, lack of variability present in real data
- model learns specific noise-dominated information in the data

Energy based models (EBMs) in generative AI

EBMs encode the empirical distribution of a dataset into a Boltzmann distribution with a given Energy function

Data

Model

$$p_{\mathrm{data}}\left(\boldsymbol{x}\right) \sim p_{\boldsymbol{\theta}}\left(\boldsymbol{x}\right) = \frac{1}{\mathcal{Z}_{\boldsymbol{\theta}}} e^{-E_{\boldsymbol{\theta}}\left(\boldsymbol{x}\right)}$$

rooted in statistical physics

Boltzmann

Dataset (e.g. MNIST)

 $\mathsf{Datum}\, x$

 θ : vector of parameters to be trained

Training: log-likelihood maximization

Used for <u>generative</u> purposes and for <u>interpretability</u> of the effective model

Theoretical analysis of overfitting in EBMs

- Use a simple model (analytically solvable) for a synthetic experiment:
- Track the quality of the inferred model as a function of the number of samples

↓ Gaussian Model

Gaussian Energy-based Model (GEBM)

 $oldsymbol{x} \in \mathbb{R}$

$$oldsymbol{J} = (oldsymbol{C}^*)^{-1}$$

Population covariance matrix

Sample M configurations from

*
$$p_{\boldsymbol{J}}(\boldsymbol{x}) = \frac{1}{\mathcal{Z}_{\boldsymbol{J}}} e^{-E_{\boldsymbol{J}}(\boldsymbol{x})}$$

$$oldsymbol{\hat{C}}^M = rac{1}{M} \sum_{\mu=1}^M oldsymbol{x}_{\mu} oldsymbol{x}_{\mu}^T$$

Empirical covariance matrix

Multivariate Gaussian

Infer back the model from these M samples

 $M \equiv \text{Number of data}$

Gaussian Energy-based Model (GEBM)

Why Gaussian Model?

Analytically solvable, both Maximum likelihood estimator and (most importantly) the training dynamics

$$\mathbf{J}\left(t\right) = \sum_{\alpha} \mathbf{J}_{\alpha}\left(t\right) \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$$

Study training dynamics (likelihood maximization) by projecting on eigenvector basis

 \rightarrow each eigenvalue of J now evolves independently on the others

Separation of learning timescales

Eigenvalue of $\frac{\mathrm{d} \boldsymbol{J}_{\alpha}}{\mathrm{d} t} = -c_{\alpha}^{M} + \frac{1}{\boldsymbol{J}_{\alpha}} \boldsymbol{C}^{M}$

Separation of time-scales

Modes corresponding to stronger correlations are learnt faster

$$c_{\alpha}^{M} = \frac{\text{Modes of PCA}}{\text{decomposition}}$$

$$J_{\alpha}(t) = \frac{1}{c_{\alpha}^{M}} + \frac{1}{c_{\alpha}^{M}} W \left(\text{const } e^{-\left(c_{\alpha}^{M}\right)^{2}} t \right)$$

1. Model learns information sequentially way* stronger PCA direction first, then weaker ones

 $egin{aligned} extbf{Learning} & ext{time-scale} & rac{1}{\left(c_{lpha}^{M}
ight)^{2}} \end{aligned}$

2. Strong/weak PCA modes have very different fluctuations w.r.t. the number of data

Eigenvalues' evolution

- A) Eigenvalues of stronger modes are the first to converge \rightarrow error decreases
- B) weaker modes are starting to be learnt

 → error decreases (up to minimum)

 eigenvalues are closer to the true value
 than to the fixed point!
- C) weaker modes converge to the fixed point,
 error increases after minimum is reached
 → error dominated by fluctuations of weaker correlations due to the low number of samples

 $\mathcal{E}_{ ext{J}} = \left\| oldsymbol{J}^{ ext{true}} - oldsymbol{J}(t)
ight\|$

Early stopping points in training dynamics

Non-monotonic behavior (w.r.t. training time) of discrepancy between true and inferred model

Models inferred with few training data are **worse** at fixed point than during training

Different EBMs, same phenomenology

 $\begin{array}{c} {\rm Gaussian~Model} \\ {\rm (GEBM)} \end{array}$

Boltzmann Machine Inverse Ising

Dataset: equilibrium configurations from 2D Ising model (high-Temp)

Similar analysis of training dynamics can be carried out analytically, using Mean-Field approximation Restricted Boltzmann Machine

Dataset: equilibrium configurations from 1D Ising model at high T

*Taken from Decelle, Furtlehner, Navas Gómez, Seoane, SciPost Physics 16(4)095 (2024)

Random matrix theory analysis

Asymptotic analysis through Random Matrix theory (RMT) to analyze finite-samples fluctuations in the training dynamics $\underline{\text{Exact on GEBM}}$

Protocols to mitigate overfitting

- regularization priors
- shrinkage correction protocols
- downsampling-based modes fitting

Extensions to more complex EBMs

Study of overfitting in arbitrary complex EBMs can be done using the score-matching algorithm

$$p_{\boldsymbol{\theta}}\left(\boldsymbol{x}\right) = \frac{1}{\mathcal{Z}_{\boldsymbol{\theta}}} e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}$$

Learning dynamics of score function governed by a Neural Tangent Kernel

$$\frac{d\psi(x|\theta_t)}{dt} = -\hat{\mathbb{E}}_{x'} \left[K_t(x, x') \psi(x'|\theta_t) \right] + \hat{\phi}_t(x)$$

Score function

$$\psi(\boldsymbol{x}|\boldsymbol{\theta}) = -\nabla_{\boldsymbol{x}} E(\boldsymbol{x}|\boldsymbol{\theta})$$

Similar learning dynamics to GEBM w.r.t. empirical covariance of latent feature in the tangent space → can lead to similar mechanism that justify the onset of overfitting

Summary

- Introduction of a novel theoretical framework to study overfitting in EBMs
- Interplay between learning timescales associated to different PCA directions (with different finite-sample fluctuations) can result in overfitting.
- Analysis on GEBM, asymptotics through RMT
- Theoretical extension on Boltzmann Machine (high-T), extension to generic EBM in the context of NTK of the score function dynamics
- sets the stage for
 a) early-stopping point determination through RMT
 b) extension of data-correction protocols to non-pairwise EBMs

with

Aurélien Decelle Universidad Politecnica Madrid (ES)

Cyril Furtlehner INRIA, Université Paris Saclay (FR)

arXiv: 2501.19158

ICML POSTER ID: 45237

