Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble

Atsushi Nitanda^{1,2}, Anzelle Lee^{3,1}, Damian Tan^{2,1}, Mizuki Sakaguchi⁴, Taiji Suzuki^{5,6}

Overview

Mean-Field Neural Network:

2-layer NN formalized as an average w.r.t. neurons, which has the global convergence and feature learning properties.

Mean-Field Langevin dynamics:

Noisy gradient descent for mean-field neural networks.

New propagation of chaos result (PoC):

Convergence of mean-field Langevin dynamics in finite-particle setup (noisy GD) with improved particle approximation error.

Model Ensemble

Establish PoC-based ensemble method with nontrivial model approximation errors.

Two-layer Neural Network in Mean-Field Regime

For loss function ℓ consider L_2 -regularized loss:

$$F(\mu) = \mathbb{E}_{(Z,Y)}[\ell(h_{\mu}(Z),Y)] + \lambda' \mathbb{E}_{\mu}[\|X\|_{2}^{2}].$$

Noisy gradient descent for *N*-particle setting:

$$d\mathbf{X}_t = -N\nabla_{\mathbf{X}_t} F(\rho_{\mathbf{X}_t}) dt + \sqrt{2\lambda} d\mathbf{W}_t$$

where $\mathbf{W}_t = (W_t^1, \dots, W_t^N), \ \mathbf{X}_t = (X_t^1, \dots, X_t^N).$

Understand the optimization and approximation efficiency.

Mean-Field Langevin Dynamics

Noisy GD is a Langevin dynamics on \mathbb{R}^{Nd} to solve

$$\min_{\mu^{(N)} \in \mathcal{P}_2(\mathbb{R}^{Nd})} \left\{ \mathcal{L}^{(N)}(\mu^{(N)}) = N \mathbb{E}_{\mathbf{X} \sim \mu^{(N)}} [F(\mu_{\mathbf{X}})] + \lambda \text{Ent}(\mu^{(N)}) \right\}$$

Model

 $h_{\mu_{\mathbf{x}}}(z) = \frac{1}{N} \sum_{r=1}^{N} h(x_r, z)$

(mean-field limit)

 $h_{\mu}(z) = \mathbb{E}_{X \sim \mu}[h(X, z)]$

Optimization

Noisy gradient descent

(mean-field limit)

Mean-field Langevin dynamics

Mean-field Langevin dynamics for infinite-particle setting: (Mean-field limit: $N \to \infty$)

$$dX_t = -\nabla \frac{\delta F(\mu_t)}{\delta \mu} (X_t) dt + \sqrt{2\lambda} dW_t,$$

[Mei, Montanari & Nguyen (2018)], [Hu, Ren, Siska, & Szpruch (2021)]

where $\mu_t = \text{Law}(X_t)$.

[Nitanda, Wu, & Suzuki (2022)], MFLD solve the following problem: [Chizat (2022)]

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \left\{ \mathcal{L}(\mu) = F(\mu) + \lambda \text{Ent}(\mu) \right\}$$

Hence, we expect $\mu_*^{(N)} \to \mu_*^{\otimes N}, \quad \frac{1}{N} \mathcal{L}^{(N)}(\mu_*^{(N)}) \to \mathcal{L}(\mu_*) \quad (N \to \infty)$

[Chen, Ren, & Wang (2024)], [Suzuki, Nitanda, & Wu (2023)]

Question: bound on the following error (opt. + approx. errors)

$$0 \leq \frac{1}{N} \mathcal{L}^{(N)}(\mu_t^{(N)}) - \underline{\mathcal{L}}(\mu_*) \leq ?$$
 Minimum in the mean-field limit

(Improved) Propagation of Chaos

Theorem (PoC)

$$\left\| \frac{\lambda}{N} \mathrm{KL}(\mu_t^{(N)} \| \mu_*^{\otimes N}) \le \frac{1}{N} \mathcal{L}^{(N)}(\mu_t^{(N)}) - \mathcal{L}(\mu_*) \le \frac{B}{N} + \exp(-2\alpha\lambda t) \Delta_0^{(N)} \right\|$$

This implies POC: $\frac{1}{N} \mathrm{KL}(\mu_t^{(N)} \| \mu_*^{\otimes N}) \to 0 \quad (t, N \to \infty).$

Finally, interaction becomes weak

Initialization

Middle of optimization

Final phase of optimization

Model Ensemble

Theorem (Approximation Error)

$$\mathbb{E}_{\{\mathbf{X}_{j}\}_{j=1}^{M}} \left[\left(\frac{1}{MN} \sum_{j=1}^{M} \sum_{i=1}^{N} h(X_{j}^{i}, z) - \mathbb{E}_{X \sim \mu_{*}}[h(X, z)] \right)^{2} \right]$$

$$\leq \frac{4R^2}{MN} + \frac{8R^2}{M} \sqrt{\frac{\text{KL}(\mu^{(N)} \| \mu_*^{\otimes N})}{N}} + \frac{2R^2 \text{KL}(\mu^{(N)} \| \mu_*^{\otimes N})}{N}.$$

Upper bound after the training: $\frac{4R^2}{MN} + \frac{8R^2}{M} \sqrt{\frac{B}{\lambda N}} + \frac{2BR^2}{\lambda N}$.

Application (LoRA for LMs): $x \mapsto Wx = W_{\text{pre}}x + \gamma BAx$.

Low-rank matrices

Model	Method	SIQA	PIQA	WinoGrande	OBQA	ARC-c	ARC-e	BoolQ	HellaSwag	Ave.
Llama2 7B	LoRA (best) PoC merge	$79.48 \\ 81.17$	$82.43 \\ 84.60$	$81.77 \\ 85.16$	$80.60 \\ 86.60$	$67.75 \\ 72.53$	$80.47 \\ 86.62$	$70.37 \\ 72.45$	$86.67 \\ 92.79$	$78.69 \\ 82.74$
Llama3 8B	LoRA (best) PoC merge	81.22 82.04	89.50 89.39	86.74 89.27	86.00 89.20	79.86 83.28	90.53 92.30	$72.91 \\ 76.33$	$95.34 \\ 96.58$	85.26 87.30