Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble
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Overview Mean-Field Langevin Dynamics (Improved) Propagation of Chaos

Mean-Field Neural Network:

2-layer NN formalized as an average w.r.t. neurons, which has
the global convergence and feature learning properties.
Mean-Field Langevin dynamics:

Noisy gradient descent for mean-field neural networks.

New propagation of chaos result (PoC):

Convergence of mean-field Langevin dynamics in finite-particle
setup (noisy GD) with improved particle approximation error.
Model Ensemble

Establish PoC-based ensemble method with nontrivial model
approximation errors.

Two-layer Neural Network in Mean-Field Regime
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For loss function ¢ consider L,-regularized loss:
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Noisy gradient descent for N-particle setting:

dX; = —NVx, F(px,)dt + V2 AdW;,

where W, =W/, ..., W), X, =(X},....X}").

Understand the optimization and approximation efficiency.

Noisy GD is a Langevin dynamics on R™? to solve
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Model Optimization
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h(2) =Ex,h(X,2)] Mean-field Langevin dynamics

Mean-field Langevin dynamics for infinite-particle setting:
(Mean-field limit: N — o)

(X,)dt + V2AdW,,

[Mei, Montanari & Nguyen (2018)],
[Hu, Ren, Siska, & Szpruch (2021)]
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where p; = Law(Xy).

[Nitanda, Wu, & Suzuki (2022)],

MFLD solve the following problem: ‘Chizat (2022)]

min (L(u) = F AEnt
Lo {L(n) = F(p) (1)}
1
Hence, we expect ui) — @V, ~ L% (1) = L) (N > o)
Joint distribution of N-particles: ;N
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Decompose X into N-particles X = (X“)¥,

constructing an empirical dist. in R?.
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This defines a population
distribution of particles as N — oo,

[Chen, Ren, & Wang (2024)], [Suzuki, Nitanda, & Wu (2023)]

Question: bound on the following error (opt. + approx. errors)
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Minimum in the mean-field limit
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This implies POC: KL(uiN)HM@N) —0 (t, N = 00).
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Extension of [Nitanda (2024]

Finally, interaction becomes weak
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Model Ensemble
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Theorem (Approximation Error)
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Application (LoRA for LMs): = — Wz = Wyex + yBAz.

Low-rank matrices

Model Method SIQA PIQA WinoGrande OBQA ARC-c ARC-e BoolQ HellaSwag Ave.

Llama2 LoRA (best) 79.48 82.43 81.77 80.60 67.75 80.47 70.37 86.67 78.69
7B PoCmerge 81.17 84.60 85.16 86.60 72.53 86.62  72.45 92.79 82.74

Llama3 LoRA (best) 81.22 89.50 86.74 86.00 79.86 90.53 72.91 95.34 85.26
8B PoCmerge 82.04 89.39 89.27 89.20 83.28 92.30 76.33 96.58 87.30
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