
A Physics-Informed Machine Learning 
Framework for Safe and Optimal
Control of Autonomous Systems

Manan Tayal*1, Aditya Singh*1, Shishir Kolathaya1, Somil Bansal2

1                                                2



Motivation

Autonomous systems are becoming increasingly prevalent across various 
domains.

Problem ⇢ maintain an optimal balance between Performance and 
Safety.

E.g., autonomous delivery vehicle navigating a cluttered env., it is 
expected to,
 
➢ Safety: Avoid obstacles
➢ Performance: Reach target in time 

Challenge: Existing methods lack scalability & 
guarantees



State Constrained Optimal Control Problem
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How do we solve this SC-OCP?



Epigraph Form of the SC-OCP
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Learning the Auxiliary Value Function
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Algorithm
Step 1: 
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Verification

Step 3: 
Inference

Step 4: Performance 
Quantification

Backward Propagation

Training
T0

SC-OCP

Auxiliary Value Function
Value correction level

Induced Safe 
Policy Rollouts

Safe and Performant Value Function

Performance Quantification level,

Induced 
Policy Rollouts

Safe &
Performant 

Policy



Experiments

Boat Navigation
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