

PTTA:

Purifying Malicious Samples for Test-Time Model Adaptation

Jing Ma, Hanlin Li, Xiang Xiang

Introduction

Test Samples

Test-Time Model Adaptation

Malicious Sample Hazards

Introduction

Sample selection wastes our limited test samples.

Question:

Rather than <u>selecting and discarding</u> malicious samples, why not **purify** them into benign ones?

Introduction

Data Stream

t = 1

t = n

Sample Selection

Benign Samples

Purified Samples

Method

➤ 1. Logit-Saliency Indicator

$$\nabla_z \mathcal{L}_{\text{Ent}}(f_{\theta}(x)) = -(\mathbf{z} - \mathbf{p} \cdot \mathbf{z}) \odot \mathbf{p} \tag{4}$$

 f_{θ} The model with parameters θ

Z The output logits

x A test sample

p The predicted probabilities

 \mathcal{L}_{Ent} Entropy minimization objective

Method

2. Benign Sample Retrieval

Method

> 3. Malicious Sample Purification

Table 2: Experimental results (top-1 classification accuracy (%)) on the lifelong TTA task.

METHODS	ROUND - R-1	R-2	R-3	R-4	R-5	R-6	R-7	R-8	R-9	R-10	AVERAGE
NoAdapt	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00	31.6±0.00
TENT	8.1±0.06	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.9±0.01
+ PTTA	60.0±0.05	31.8±0.11	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	0.1±0.00	9.3±0.02
COTTA	42.9±0.25	40.6±0.57	37.0±1.33	34.8±0.82	33.5±1.02	32.0±0.67	31.0±0.50	30.5±0.61	30.7±0.89	30.6±0.90	34.4±0.53
+ PTTA	52.1±0.28	46.3±0.25	42.8±0.04	40.3±0.06	39.2±0.09	38.8±0.01	38.4±0.14	38.2±0.03	38.0±0.05	37.6±0.08	41.2±0.02
SoTTA	59.5±0.22	60.7±0.15	61.0±0.15	61.3±0.16	61.5±0.13	61.5±0.19	61.6±0.15	61.7±0.15	61.8±0.22	61.9±0.20	61.3±0.24
+ PTTA	61.3±0.39	62.6±0.42	63.1±0.34	63.4±0.31	63.5±0.27	63.7±0.26	63.8±0.27	63.9±0.25	63.9±0.25	64.0±0.24	63.3±0.43
SAR	60.0±0.02	61.1±0.02	61.4±0.02	61.6±0.02	61.7±0.02	61.8±0.03	61.7±0.02	61.6±0.08	59.3±0.26	60.4±0.06	61.1±0.04
+ PTTA	61.6±0.01	63.0±0.00	63.4±0.00	63.6±0.03	63.8±0.02	63.9±0.01	64.0±0.02	64.0±0.02	64.1±0.00	64.1±0.02	63.5±0.00
ETA	62.2±0.07	59.5±0.13	55.4±0.39	46.6±7.84	31.5±27.2	29.5±25.4	28.2±24.3	26.2±22.6	26.1±22.6	25.1±21.6	39.0±15.2
+ PTTA	65.3±0.06	65.4±0.03	65.3±0.06	65.1±0.01	64.9±0.03	64.7±0.05	64.6±0.03	64.4±0.06	64.3±0.04	64.1±0.04	64.8±0.00
EATA	62.5±0.40	62.2±0.39	61.9±0.37	61.7±0.44	61.6±0.48	61.4±0.44	61.3±0.53	61.2±0.38	61.0±0.42	61.0±0.35	61.6±0.41
+ PTTA	64.7±0.31	65.0±0.43	65.0±0.39	65.1±0.43	65.1±0.40	65.0±0.38	65.0±0.45	65.0±0.43	65.0±0.39	65.0±0.41	65.0±0.40
DEYO	62.0±0.50	43.1±18.9	32.7±29.0	25.0±27.8	17.9±30.7	16.8±28.8	15.9±27.4	3.5±5.94	0.1±0.01	0.1±0.00	21.7±15.9
+ PTTA	65.8±0.01	66.0±0.05	66.0±0.04	65.9±0.05	65.9±0.05	65.8±0.07	65.7 ±0.05	65.5 ±0.07	64.9±0.91	61.6±4.30	65.3 ±0.53
CPL	55.5±0.13	57.3±0.11	57.8±0.10	58.1±0.15	58.4±0.27	58.5±0.21	58.5±0.20	58.7±0.11	58.8±0.10	58.8±0.21	58.0±0.13
+ PTTA	59.7±0.02	61.5±0.02	62.0±0.03	62.3±0.02	62.6±0.02	62.7±0.00	62.9±0.03	63.0±0.00	63.1±0.01	63.2±0.03	62.3±0.01

➤ Why logit-saliency indicator works?

Figure 6: The Saliency Distance (normalized to the range of $0 \sim 1$) among test samples sorted in the ascending order of prediction entropy and split by percentages. A good indicator satisfies $\mathcal{D}_{sa}(x^+, x^+) > \mathcal{D}_{sa}(x^+, x^-) > \mathcal{D}_{sa}(x^-, x^-)$.

Unnecessary of Sample Selection

Figure 5: Comparison of selecting benign samples and using all samples as candidates for purifying malicious samples.

> Insensitivity to thresholds

Efficiency of PTTA

Table 8: The running time (seconds) per batch for different TTA algorithms and their PTTA-applied versions. The batch size is set to 64. Δ denotes the runtime increase ratio of PTTA-applied versions compared to the base TTA methods.

METHODS	RESNET50	VIT-B/16	
TENT	0.157	0.264	
+ PTTA	0.219	0.376	
Δ	39.5%	42.4%	
ETA	0.158	0.270	
+ PTTA	0.225	0.384	
Δ	42.4%	42.2%	
EATA	0.171	0.291	
+ PTTA	0.236	0.410	
Δ	38.0%	40.9%	
DEYO	0.177	0.328	
+ PTTA	0.254	0.420	
Δ	43.5%	28.0%	

METHODS	RESNET50	V1T-B/16	
CPL	0.157	0.310	
+ PTTA	0.225	0.400	
Δ	43.3%	29.0%	
SAR	0.225	0.540	
+ PTTA	0.328	0.770	
Δ	45.8%	42.6%	
CoTTA	0.530	1.440	
+ PTTA	0.673	1.597	
Δ	27.0%	10.9%	
Sotta	0.794	1.379	
+ PTTA	0.872	1.597	
Δ	9.80%	15.8%	

Table 9: The storage overhead of the memory bank for a first-in-first-out queue with a maximum length of 1,000.

LOGIT-SALIENCY	PREDICTED	RAW
INDICATOR	PROBABILITIES	IMAGES
28.0 KB	28.0 KB	35.0 MB

Thank You

More interesting analyses in our paper!

Code available on Github!