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Protein representation learning has proven highly valuable in various application tasks
such as protein-protein interaction identification and function prediction.

However, lacking factual knowledge (e.g., gene descriptions) makes existing models
struggle to capture biological function encoded within protein sequences.



Background

A complex system of membrane-bounded compartments located
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The process that occurs after viral attachment by
which a virus, or viral nucleic acid, breaches the

= = = —» plasma membrane or cell envelope and enters the
host cell...
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Recent efforts have introduced
protein knowledge graphs, such
as ProteinKG25, to incorporate
prior biological knowledge into
protein embeddings

PKGs describe the
relationships between
proteins and gene ontology
(GO) entities with biological
relations



Limitation of Existing Methods
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[1] Ontoprotein: Protein pre-training with gene ontology embedding



Limitation of Existing Methods

KeAP [1]
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(1) Unable to incorporate knowledge modeling during task fine-tuning, leading to inconsistent optimization
objectives between the pre-training and fine-tuning stages. This inconsistency can cause the knowledge
learned during pre-training to be catastrophically forgotten when applied to downstream tasks

[1] Protein Representation Learning via Knowledge Enhanced Primary Structure Reasoning



Catastrophic Forgetting of Existing Methods

After Pre-training After Task Fine-tuning

Models Precision Similarity | Precision Similarity
OntoProtein 0.712 0.901 0.621 0.632
KeAP 0.705 0.918 0.645 0.677

Similarity: semantic similarity between the embeddings of two proteins with the same attribute
knowledge —a higher cosine similarity indicates better retention of knowledge information.

Precision: accuracay of the model to identify, from a set of candidate proteins, the one sharing attribute
knowledge with a given protein—a higher accuracay indicates better retention of knowledge information.

OntoProtein, KeAP perform well After fine-tuning on downstream
after pretraining, confirming their tasks, OntoProtein and KeAP show
ability to learn attribute knowledge. significant drops, indicating that

they lose some of the knowledge
acquired during pretraining.



The Proposed Framework Kara
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B. Fine-tuning Stage
Implicitly embed knowledge information: Employ contextualized virtual tokens, achieving token-level
information fusion between protein sequence and knowledge.

Structural Information: Proposes a sructure-based regularization, bringing function similarities into protein
representations.

Catastrophic Forgetting: Using a knowledge retriever to predict potential gene descriptions for new protelns
Unifying the knowledge modeling process of the pre-training and fine-tuning stages
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Knowledge information token and
struture information token

By summarizing the associated knowledge of a protein as knowledge
virtual tokens and summarizing its high-order structure as structure
virtual tokens, Kara can directly inject the knowledge and graph
information into protein representations, instead of reserving
knowledge within model parameters.
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High-order connectivity indicates that two proteins share the same
knowledge and thus should be similar in their biological functions.
The structure-based regularization can integrate biological functlon
similarities into their representations.
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Knowledge Retriever

Unify the semantic space of different modalities Reduce the retrieval complexity by
based on multi-modal matching loss: finding relation-GO combinations:
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Experimental Results

Amino Acid Contact Prediction Homology Detection and Stability Prediction
| 6<seqs12 | 12<seg<2d | 24< seq Models Homology | Stability
Models | P@L P@L/2 P@L/S | P@RL P@L/2 P@L/S | P@L P@L2 P@L/5
LSTM 026  0.36 049 | 020 026 034 | 020 023 0.27 Iﬁi?}‘:t g‘fg g‘gg
ResNet 025  0.34 046 | 028 025 035 | 010 0.13 0.17 T 2 f 021 073

Transformer | 0.28  0.35 046 | 019 025 033 | 017  0.20 0.24 ranstarer - -
ProtBert | 030 040 052 | 027 035 047 | 020 026 034 ProtBert 0.29 0.78
ESM-1b | 038 048 062 | 033 043 056 | 026 034 045 ESM-1b 0.11 0.77
ESM2 | 040 050 062 | 035 044 056 | 027 035 045 ESM-2 0.13 0.80

OntoProtein | 0.37  0.46 0.57 | 032 040 050 | 024 031 0.39 OntoProtein 0.24 0.75
KeAP 041  0.51 0.63 | 036 045 0.54 | 028  0.35 0.43 KeAP 0.29 0.80

Kara | 045 055 065 | 039 048 059 | 031 0.39 0.48 Kara 0.32 0.83
Protein-Protein Interaction ldentification
| SHS27K | SHS148K | STRING Experiments in 6 representative tasks show the

Models BFS DFS Avg BFS DES Avg BES DFES Avg -

DNN-PPI 4809 5434 5122 | 5740 5842 5791 | 53.05 6494 59.00 eﬁectlveness Of Kara' It OUtperforrr_ls powerfUI
DPPI 4143 4612 4377 | 5212 52.03 52.08 | 56.68 66.82 61.75 baselines across all the tasks. For instance, Kara
PIPR 4448 57.80 51.14 | 61.83 6398 6291 | 5565 6745 61.55

GNN-PPI | 63.81 7472 6927 | 7137 82.67 77.02 | 7837 91.07 84.72 exceeds the state-of-the-art knowledge-enhanced

ProtBert 7094 7336 7215 | 7032 78.86 7459 | 67.61 8744 7153 model KeAP by 11_60/0 in the Iong_range contact

ESM-1b 7492 78.83 7688 | 7749 82.13 79.31 | 78.54 88.59 83.57 . . o/ = .

ESM-2 | 7505 79.55 77.30 | 77.19 83.34 80.26 | 81.32 89.19 85.30 prediction and by 10.3% in the protein homology
OntoProtein | 72.26 78.89 7558 | 7523 77.52 7638 | 76.71 9145 84.08 deteCtion
KeAP T858 7754 7806 | 77.22 84.74 8098 | 81.44 89.77 85.61 11

Kara 81.18 78.85 80.01 | 79.62 86.02 82.82 | 82.73 92.46 87.59



Experimental Results

Catastrophic Forgetting After fine-tuning, Kara's performance

After Pre-training | After Task Fine-tuning remains stable. Furthermore, removing
Models Precision  Similarity | Precision Similarity the structure loss or virtual token leads
OntKOP;OPfem 8';(1)2 8-3(1)513 8'2421; 8'233 to performance degradation after fine-
c : . s : - . . - -
wlo structure-based regularization | 0.722  0.906 0.624 0.749 tuning, highlighting the importance of
w/o contextualized virtual tokens 0.713 0.902 0.676 0.816 ur!'fled _knOWIGdge mt_eg ration |.n
Kara 0.738 0.934 0.725 0.968 mitigating catastrophic forgetting.

Performance with Incomplete Protein Knowledge Graph

Contact . . Kara with incomplete PKG still
Models (6<seq 5112) Homology T | Stability T | Affinity | outperforms OntoProtein and KeAP with
OntoProtein (full KG) 0.460 0.240 0.750 0.590 full PKG, showing Kara’'s robustness. We
KeAP (full KG) 0.510 0.290 0.800 0.520 attribute the outperformance to
Kara (50% KG) 0.540 0.316 0.823 0.511 knowledge retriever and virtual tokens,
Kara (70% KG) 0.546 0.322 0.828 0.503 which well integrate knowledge into

model learning.
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