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Problem Background

(b) Manifold ranking
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• Q1: How to effectively model the intrinsic manifold structure?

• Q2: How to extract reliable ranking signals from the graph?

• Q3: How to mitigate the impact of noise in adjacency graph

connections and prevent the loss of essential information?
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Problem Background

In our previous work [LYX24], we proposed a Bidirectional Similarity

Diffusion strategy to capture the underlying manifold information:
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where W represents the weighted adjacency matrix, D denotes the

diagonal matrix and E is the diffusion source matrix.

Goal: derive the manifold-aware similarity matrix F from W .
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Bidirectional Collaborative Diffusion

To improve robustness across varying conditions, we develop an adaptive

ensemble framework [LWY+25] that integrates multiple similarity matrices:
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Figure 1: Motivation of Bidirectional Collaborative Diffusion.
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Bidirectional Collaborative Diffusion

To improve robustness across varying conditions, we develop an adaptive

ensemble framework [LWY+25] that integrates multiple similarity matrices:
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where Hv is the objective function based on W v defined as:
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Goal: derive the manifold-aware similarity matrix F from a series of adja-

cency matrices {W v}mv=1.
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Numerical Solution

We propose a numerical solution that decomposes the target function

into two sub-problems, enabling systematic iterative approximation.

Optimize F with Fixed β. The optimum is reached via iterative updates:

F (t+1) =
1

2

m∑
v=1

αv

(
F (t)(Sv )⊤ + SvF (t)

)
+ (1− α)E

where αv = βv

µ+1 , α = 1
µ+1 and S = D−1/2WD−1/2.

Remark: a higher convergence rate can be achieved with the conjugate

gradient method.
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Numerical Solution

We propose a numerical solution that decomposes the target function

into two sub-problems, enabling systematic iterative approximation.

Optimize F with Fixed β. The optimum is reached via iterative updates:

F (t+1) =
1

2

m∑
v=1

αv

(
F (t)(Sv )⊤ + SvF (t)

)
+ (1− α)E

where αv = βv

µ+1 , α = 1
µ+1 and S = D−1/2WD−1/2.

Optimize β with Fixed F . The optimal weight set {β∗
v }mv=1 can then be

obtained by solving the KKT conditions, given by:

β∗
v =


∑

v ′∈I Hv ′ − |I|Hv + λ

λ|I|
, v ∈ I

0, v ∈ {1, 2, . . . ,m}/I

where
I =

{
v |Hv < (

∑
v ′∈I

Hv ′
+ λ)/|I|, v = 1, 2, . . . ,m

}
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Locality State Embedding

For each instance, only the indices belonging to the local region are

preserved and assigned the weights by utilizing the corresponding row of

F ∗, resulting in a sparse matrix P̂ followed by:

P̂ij = F ∗
ij /

∑
j∈R(i,k1)

F ∗
ij , if j ∈ R(i , k1)

Moreover, the local consistency can be further strengthened, yielding the

final neighbor-aware probability distribution pi for each xi as:

pi =
∑

j∈N (i,k2)

(κ1R
ij + 1)p̂j/(κ|R(i , k2)|+ k2),

The resulting probability state distributions for each instance in X can

then be organized as {pi}ni=1 ∈ Rn.
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Thermodynamic Markovian Transition

To address the problem of unreliable information propagation, we propose

a long-term Thermodynamic Markovian Transition process to bridge

each pair of distributions within the manifold space.

Minimum Transition Flow Cost

Thermodynamic 

Markovian Transition 

Figure 2: Motivation of the long-term transition process.

7



Thermodynamic Markovian Transition

To address the problem of unreliable information propagation, we propose

a long-term Thermodynamic Markovian Transition process to bridge

each pair of distributions within the manifold space.

Each step of transition is governed by the master equation [VVS23]:

q̇t = Ttqt

We aim to learn a transition policy π that defines a sequence of interme-

diate states, bridging the source and target distributions within a time in-

terval τ . Formally denoted as {pik}Kk=0 = π({pi}ni=1), q0 = pi0 , qτ = piK .

We can prove that the minimum transition cost can be computed by:

min
π

K−1∑
k=1

W1(pik ,pik+1
)
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Experimental Results

Method
Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R-GeM (Radenović et al.,2019) 67.3 49.5 80.6 57.4 44.2 25.7 61.5 29.8

AQE (Chum et al., 2007) 72.3 56.7 82.7 61.7 48.9 30.0 65.0 35.9

αQE (Radenović et al.,2019) 69.7 53.1 86.5 65.3 44.8 26.5 71.0 40.2

DQE (Arandjelović & Zisserman, 2012) 70.3 56.7 85.9 66.9 45.9 30.8 69.9 43.2

AQEwD (Gordo et al., 2017) 72.2 56.6 83.2 62.5 48.8 29.8 65.8 36.6

LAttQE (Gordo et al., 2020) 73.4 58.3 86.3 67.3 49.6 31.0 70.6 42.4

ADBA+AQE 72.9 52.4 84.3 59.6 53.5 25.9 68.1 30.4

αDBA+αQE 71.2 55.1 87.5 68.4 50.4 31.7 73.7 45.9

DDBA+DQE 69.2 52.6 85.4 66.6 50.2 29.2 70.1 42.4

ADBAwD+AQEwD 74.1 56.2 84.5 61.5 54.5 31.1 68.6 33.7

LAttDBA+LAttQE 74.0 60.0 87.8 70.5 54.1 36.3 74.1 48.3

DFS (Iscen et al., 2017) 72.9 59.4 89.7 74.0 50.1 34.9 80.4 56.9

RDP (Bai et al., 2019) 75.2 55.0 89.7 70.0 58.8 33.9 77.9 48.0

EIR (Yang et al., 2019) 74.9 61.6 89.7 73.7 52.1 36.9 79.8 56.1

EGT (Chang et al., 2019) 74.7 60.1 87.9 72.6 51.1 36.2 76.6 51.3

CAS (Luo et al., 2024) 80.7 61.6 91.0 75.5 64.8 39.1 80.7 59.7

GSS (Liu et al., 2019) 78.0 61.5 88.9 71.8 60.9 38.4 76.5 50.1

SSR (Shen et al., 2021) 74.2 54.6 82.5 60.0 53.2 29.3 65.6 35.0

CSA (Ouyang et al., 2021) 78.2 61.5 88.2 71.6 59.1 38.2 75.3 51.0

STML (Kim et al., 2022) 74.1 53.5 85.4 68.0 57.1 27.5 70.0 42.9

ConAff (Yu et al., 2023) 74.5 53.9 88.0 61.4 56.4 30.3 73.9 33.6

LPMT 84.7 64.8 93.0 76.1 67.8 41.4 84.1 60.1

Table 1: Evaluation of the performance on ROxf, RPar, ROxf+1M, RPar+1M.
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Summary & Future Work

• Throughout this line of work, we present a comprehensive framework

of manifold ranking for instance retrieval in a regime where the

extracted features are noisy and lack sufficient representativeness.

• Our proposed LPMT framework can be seamlessly integrated into

various image retrieval systems as a post-processing module.

• In the future, we aim to extend the application of LPMT to a

broader range of machine learning tasks and vector database

systems.

Thank you for all your attention!
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