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We collected CLIMB, one of the largest multimodal clinical
dataset across 15 modalities. Models trained on CLIMB achieve

up to 32.54% AUC improvements over previous SoTA.

We introduce CLIMB (Clinical Large‐scale Integrative Multi‐modal Benchmark), a comprehensive
dataset unifying 4.51M samples across 44 datasets, totaling 19.01 TB. Multitask pretraining on
CLIMB significantly improves performance by up to 32.54% especially for understudied modalities,
enables strong few‐shot transfer to novel tasks, and enhances multimodal fusion.

Figure 1. CLIMB unifies diverse clinical data across 15 modalities including imaging (2D/3D), time series (EEG/ECG),
graphs, and multimodal combinations.

Experimental Setups

* We start from current pretrained SoTA, then train the model on CLIMB with the following tasks:
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CLIMB is the current largest and most diverse public clinical
diagnosis dataset. You can download the data easily via our

downloader on Github.
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Figure 2. (a) Visualization of CLIMB dataset composition. (b) Focus of dataset collection. (c) Distribution of data
collection sites in CLIMB. (d) Example code usage on CLIMB framework. (e) Sample data from CLIMB.

Experimental Results
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Multitask pretraining significantly improves per‐
formance across tasks, achieving up to 32.54%
AUC improvement in understudied areas.

Few‐shot performance on models trained on
CLIMB demonstrate significant improvements,
achieving up to 29% improvement.

Multimodal fusion: Single‐modality pretraining
on CLIMB enhances multimodal learning perfor‐
mance, leading to successful transfer to MIMIC‐IV.
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Figure 3. Difference in AUC achieved by the multitask
model compared to single‐task training.

Figure 4. Few‐shot performance of models across
different pretraining (PT) datasets.

Below describes our preprint

QoQ-Med: Building Multimodal Clinical Foundation Models
with Domain-Aware GRPO Training
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Q: Above is a chest CT scan slice of a patient. What 
type of Pulmonary Embolism (PE) is present in this CT 
scan? Answer with one of the following: 
No PE, Chronic PE, Acute PE
A: No PE
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Challenge: In multimodal training, frequent modalities and easy samples dominates training.
Idea: Hierarchically clusters samples during training, upscaling rewards from rare and hard domains.
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Figure 5. (a) DRPO performance vs GRPO. (b) QoQ‐Med vs other open/closed source models
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