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Proxy-FDA: Proxy-based Feature 
Distribution Alignment for Fine-tuning 
Foundation Models without Forgetting



Foundation models show good zero-shot generalization 
• Vision foundation models: CLIP, DINOv2, MAE… 
• They encode rich knowledge on real-world concepts
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Fine-tuning for better task adaptation 
• End-to-end, linear probing 
• Parameter-efficient fine-tuning: prompt tuning, adapter learning 
• Frequent undesirable effect: concept forgetting
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Concept forgetting: after fine-tuning on ,  between  and  
on a new dataset  

• Overfitting on downstream dataset 

Dft Δperf < 0 f ̂θ fθ
D

Dft

Background
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Robust fine-tuning of foundation models 
• Preserve pre-trained knowledge, and generalize to new tasks 
• Maintain good fine-tuning performance on the target task

Goal
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Two-stage tuning: linear probing + end-to-end 
- LP-FT [ICLR 2022] 

Ensemble models before and after fine-tuning 
- WiSE-FT [CVPR 2022] 

Literature
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Robust fine-tuning to mitigate concept forgetting



Weight-space regularization 
- L2SP [ICML 2018]: constrain the change in model weights before and after fine-tuning 

Feature-space regularization 
- LDIFS [TMLR 2024]: match the pre-trained and fine-tuned features across samples 
•More promising: directly minimizes the change in input-output behavior of a model 
• Point-wise regularization is too strong 
• Lack explicit awareness of the feature neighborhood structures that encode rich knowledge too! 

Literature
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Robust fine-tuning to mitigate concept forgetting



To better preserve concepts during fine-tuning 
• Structure-wise feature regularization — Proxy-FDA

Idea
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Feature Distribution Alignment (FDA) 
• Align the structures of the pre-trained and fine-tuned feature distributions 

• Structure in NN graph: neighbor index , neighbor similarities  by Ri wi f ̂θ

Method
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Method
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Feature embeddings of pre-trained CLIP model on ImageNet

“French bulldog” “Miniature poodle”
Shared white color attribute

Preserving the common knowledge during fine-tuning maintains the generalizability of foundation models



Proxy-FDA 
• Helps data-deficient fine-tuning tasks that do not allow sufficient FDA 
• Online generator: generate “proxies” as synthetic features to increase diversity

Method
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Method
Feature embeddings of pre-trained CLIP model on ImageNet

Proxies improve FDA with richer data/concepts, thereby further reducing concept forgetting
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3 fine-tuning settings (classification): 
• End-to-end 
• Few-shot (more severe forgetting) 
• Continual (on a sequence of tasks, catastrophic forgetting) 

More fine-tuning tasks beyond classification: captioning, etc

Results
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Results
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CLIP ViT-B/32: end-to-end fine-tuned on 10 image classification datasets

Fine-tuning performance          (dataset averaged)
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Results
CLIP ViT-B/16: few-shot prompt tuning on 11 image classification datasets
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Results
Continual fine-tuning on Split ImageNet-R

Average accuracy
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Conclusions

• Proxy-FDA preserves concepts when fine-tuning vision foundation 
models, by aligning feature distribution structures with learned proxies 

• State-of-the-art performance on mitigating forgetting in various fine-
tuning settings and across different tasks 

• Future plan: applications to foundation models beyond vision
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