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Background

Foundation models show good zero-shot generalization
. Vision foundation models: CLIP, DINOv2, MAE...

- They encode rich knowledge on real-world concepts
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Background

Fine-tuning for better task adaptation

- End-to-end, linear probing

- Parameter-efficient fine-tuning: prompt tuning, adapter learning
- Frequent undesirable effect: concept forgetting
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Background
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Goal

Robust fine-tuning of foundation models
- Preserve pre-trained knowledge, and generalize to new tasks
- Maintain good fine-tuning performance on the target task
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Literature

Robust fine-tuning to mitigate concept forgetting

Two-stage tuning: linear probing + end-to-end
- LP-FT [ICLR 2022]

Ensemble models before and after fine-tuning
- WIiSE-FT [CVPR 2022]



Literature

Robust fine-tuning to mitigate concept forgetting

Weight-space regularization
- L2SP [ICML 2018]: constrain the change in model weights before and after fine-tuning

Feature-space regularization
- LDIFS [TMLR 2024]: match the pre-trained and fine-tuned features across samples

- More promising: directly minimizes the change in input-output behavior of a model
- Point-wise regularization is too strong

- Lack explicit awareness of the feature neighborhood structures that encode rich knowledge too!
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To better preserve concepts during fine-tuning

. Structure-wise feature regularization — Proxy-FDA
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Method

Feature Distribution Alignment (FDA)

- Align the structures of the pre-trained and fine-tuned feature distributions

. Structure in NN graph: neighbor index R;, neighbor similarities w; by f;
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Method

Feature embeddings of pre-trained CLIP model on ImageNet
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Preserving the common knowledge during fine-tuning maintains the generalizability of foundation models
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Method

Proxy-FDA

- Helps data-deficient fine-tuning tasks that do not allow sufficient FDA
- Online generator: generate “proxies” as synthetic features to increase diversity
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Method

Feature embeddings of pre-trained CLIP model on ImageNet
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Proxies improve FDA with richer data/concepts, thereby further reducing concept forgetting
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Results

3 fine-tuning settings (classification):
- End-to-end
- Few-shot (more severe forgetting)

- Continual (on a sequence of tasks, catastrophic forgetting)

More fine-tuning tasks beyond classification: captioning, etc



Results

CLIP ViT-B/32: end-to-end fine-tuned on 10 image classification datasets
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Results

CLIP ViT-B/16: few-shot prompt tuning on 11 image classification datasets
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Results

Continual fine-tuning on Split ImageNet-R
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Conclusions

- Proxy-FDA preserves concepts when fine-tuning vision foundation
models, by aligning feature distribution structures with learned proxies

. State-of-the-art performance on mitigating forgetting in various fine-
tuning settings and across different tasks

. Future plan: applications to foundation models beyond vision




TM and © 2025 Apple Inc. All rights reserved.



