Adapting Precomputed Features for Efficient Graph Condensation

Yuan Li¹, Jun Hu¹, Zemin Liu², Bryan Hooi¹, Jia Chen³, Bingsheng He¹

> ¹National University of Singapore ²Zhejiang University ³GrabTaxi Holdings Pte. Ltd.

Graph Condensation (GC)

- GNNs face scalability issues on large-scale graphs.
- Graph Condensation¹ compresses a graph into a smaller, synthetic one, while preserving critical information.

¹ Jin et al. Graph Condensation for Graph Neural Networks, ICLR 2022

Example of Graph Condensation

Related Work

- Gradient Matching: Match GNN gradients between graphs.
- Distribution Matching: Align embedding distributions.
- Trajectory Matching: Match training dynamics over multiple steps.

Challenge: Inefficient GNN Re-training²

Research Question

Can we achieve efficient and effective GC without GNN re-training?

²Zhang et al. Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching, ICML 2024

Our Proposal: GC via Precompute-then-Adapt (GCPA)

- **1 Precomputation:** Extract structural & semantic information.
- **Adaptation:** Refine features via class-wise alignment & diversity.

Structure-based Precomputation

Aggregate multi-hop neighbors.

Semantic-based Precomputation

Mean-pool over uniformly sampled nodes per class.

Adaptation Learning

Align same-class features; Promote diversity to avoid collapse.

Performance Comparison

Precomputation + adaptation achieve SOTA.

Performance vs. Efficiency

Strong tradeoff between performance and efficiency.

Ablation on Precomputation Stage.

Both structure and semantics contribute to performance.

Feature Visualization

Clear class boundaries and superior clustering metrics.

Conclusion and Future Work

- Existing graph condensation methods require costly re-training.
- We propose GCPA for efficient GC via precomputation & adaptation.
- ullet GCPA achieves SOTA performance with up to 2,455imes speedup.

Future Work:

- Explore more precomputation approaches.
- Extend to more graph types.

Acknowledgements

- Supported by NRF Singapore and IMDA under Trust Tech Funding Initiative.
- Code: https://github.com/Xtra-Computing/GCPA