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Test-Time Scaling for Large Language Models
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Test-Time Scaling for Large Language Models

longer responses, “more thinking”, self-correction, etc.
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Finetuning LLMs is Critical for Test-Time Scaling

Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters [ Key idea: Finetune LLMS]

Charlie Snell* !, Jachoon Lee?, Kelvin Xu® ? and Aviral Kumar® 2 to e n a b I e th i S b e h avi O r!

‘Equal advising, luc Berkeley, ?‘Google DeepMind, *Work done during an internship at Google DeepMind

Sequential self-correction
(Qu et al. 2024, Kumar et al. 2024)

Rank using a verifier
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A Family of Test-Time Scaling Algorithms

Q)Q Input Input |np9 thought r
This training has
‘ .
] been done via:

| eed

N Majonty vote

(a) Input-Output  (c) Chain of Thought  (c) Self Consistency

=  RLorSFT
 Dense vs sparse
supervision

« Different “types”
of training data

Prompting (I0)  Prompting (CoT) wilth CoT [CoT-ST) (d) Tree of Thoughts (ToT)

Training for test-time scaling: Train LLMs to implement these procedures

Yao et al. Tree of Thoughts. NeurlPS 2023.



Desiderata: What Do We Want at Test Time
(@ )

Question: 2+2 =?

<think>

Okay, so | need to figure out what 2 plus 2 is. Let me start
by recalling basic addition. When you add two numbers,
you're combining their values. So if | have 2 apples and
someone gives me 2 more apples, how many apples do |
have in total?

Let me count them out. First, | have 1, 2 apples. Then | 4 ] e )

add another 2 apples: 3, 4. So that makes 4 apples Desideratum 1: Don’t

SRl spend too many tokens
_On easy questions!




Desiderata: What

Do We Want at Test Time

@
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Show that the inequality

anzn:\ﬂxz'—xﬂiizn:\/m"‘xﬂ

i=1 j=1 i=1 j=1
holds for all real numbers 1, x5, ..., x,.

Wait, but if we can bound sum sqrt(|x_i - x_j|) < sum sqrt(|x_i + x_j|), and we know that sum sqrt(|x_i + x_j|) +
sum sqrt(|x_i - x_j|) < 2 sum sqrt(|x_i| + |x_j|), then combining these would give 2 sum sqrt(|x_i - x_j|) <2 sum
sqrt(|x_i| + |x_j|), which would imply sum sqrt(|x_i - x_j|) < sum sqrt(|x_i| + [x_j|). But this is different from our

original inequality. Hmm.

Alternatively, maybe consider that for each pair (i, j), sqrt(|x_i + x_j|) + sqrt(|x_i - x_j|) = 2 sqrt(|x_i|), as a form
of the arithmetic mean - geometric mean inequality? Let's test with x_i=1,x_j=1:sqrt(2) +0=1.414 =21 =

2. No.x_i=2,x_j=0:sqrt(2) + sqrt(2) = 2.828 = 2sqrt(2) = 2.828. Equality. x_i=3, x_j = 1: sqrt(4) + sqrt(2) = 2 +
1.414 = 3.414 = 2*sqrt(3) = 3.464. No, still less. So this inequality doesn't hold.

This is getting frustrating. Maybe | need to look for a different approach.  .et's think about the original
Inequatity again. IT's symmetric in all X_I. Maype consiaer some symmetry such as replacing x_i with -x_i. If

we replace each x_i with -x_i, the left side becomes sum sqrt(|-x_i + x_j|) = sum sqrt(|x_j - x_i|) = same as
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Desideratum 2: Keep
making progress on hard
guestions, even beyond

9 compute budget y




Problem Setup: LLM Math Reasoning Problems

Initial state
Problem: Suppose a and b are positive real numbers with ¢ > b and ab = 8. Find the minimum
2 2
value of ©10-,
Ground truth solution: We can write 2 +22 = “2+b2a_2b“b+16 = ;’)szG =a—b+ 1% By

AM-GM, a — b+ 25 > 2\/ a—1b) 1% =8 Equahtyoccurs hena,—b—4andab— 8 We
can solve these equations to find a = 2v/3 + 2 and b = 2\/_ — 2./Thus, the minimum value is | 8 |.

\ reward = 1 if

. answer IS correct
Steps = actions




Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be efficient
Short answer: not really! » Hard problems: Make sure to make constant progress

. Full trace . g Partial trace .
<think> <think>
Okay, so | have this Okay, so | have this
problem where ...

[ Experiment setup ]

o

A
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problem where ... H
1
1
1
|
1
1
1
|
1
|
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{ \
:’ E E Wait, let’s parse the i Time is up.
. . . | problem again ... ] Given the time I've ...
i Chop the thinking block in | | :
l r | | i its | </think
\ DeepSeek-R1 and ask it ! | . g
I I i |
=\ tO prOdUCG beSt answer ,= i But let me double-check i
i </think> i
i **Solution™* i **Solution**
i| Step 1: ... x ! Step 1: ... V
{( **Final Answer** | **Final Answer*

_________________________

10
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be token-efficient!

Short answer: not really! » Hard problems: Make sure to make constant progress
Majority voting
0.6 over solutions
[ Experiment setup ] 0e \

[
I
I

Chop the thinking block in
DeepSeek-R1 and ask it
to produce best answer

/,/;/ Average accuracy
'/ after different blocks

accuracy
o
N

™ =
N -

10 11 12 13
log tokens

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be token-efficient!
Short answer: not really! » Hard problems: Make sure to make constant progress

Majority voting
0.6 over solutions

~

Takeaway: Can make progress

by implementing the “algorithm”

of running a simple majority vote,
but it does not.

\_ J

accuracy
o
S

10 11 12 13
log tokens

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Formulation: How to Satisty These Desiderata

Let’s start from the final goal

max Ex.p,, Eoonx) [7(x,2)]

on test problems response sampled Total compute constraint
from model (Ionger per problem

than typical solution)

13
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Formulation: How to Satisfy These Desiderata

<

max B~ Do [4AZNW(,|X) r(x, Z)H s.t. Vx, {'.W(,|X)\z\ < ()

, ¥ ¥

max x~D,, ... [4Jz~7r(-|x) (X, Z)” S.t. ...

Can optimize this via:
» RL (like DeepSeek-R1): outcome-reward RL
» SFT/STaR: collect data, filter by correctness, maximize likelihood

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Why is Outcome Reward + Fixed Budget Bad?

Allowed budget C,

7
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%
.
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: Easy problems: Both get \

. rewarded the same way )

Allowed budget C,,

(never on track)

r

.

Hard problems: Neither
trace gets rewarded

\

15

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Formulation: "Budget-Agnostic” LLMs

Key idea: Incentivize the LLM to make progress regardless of the compute budget

max MHx~p,. .. [4IZN7T(.|X) [?"(X,Z)H S.t. ...

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



l[dea: What is Good Progress on New Problems?

Most progress (an oracle)

, Partial trace .

? %1 { \
g 1 : i
-c% 8 i <think> i
< 2 i Okay, so | have this E
o N ! problem where ... :
| - 1 1
o o : :
i Time is up. !

< > i Given the time I've ... ]

| i

\ [}

Test-time token budget (H)

</think> )

________________________

Majority
Voting

*Solution™
Step 1: ... V
**Final Answer** 17

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



l[dea: What is Good Progress on New Problems?

Most progress (an oracle)

Probability
of success

Test-time token budget (H)

We want this area to be as low as possible!
(i.e., a notion of cumulative regret)

18
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Inducing a Good Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang® et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.
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Inducing a Good Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang® et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.
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Inducing a Goo Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang® et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.
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Concrete |dea: Progress Reward Design

B Dovainszmn(clx) | OV logm(z5]x, z0:j—1) - (r(%,2) + o - Tprg (X, Z05))

J

So far, we were using accuracy of the model
that aims to write out the solution given the episodes so far

A “prover” policy that guesses the best answer

Tprg (X, Zo:5) = Jr((:]X, 20:5)) — Jr(p(-[X, Z0:j—1))

\_

J

22
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Concrete |dea: Progress Reward Design

r... 1S the difference

prg
/ of these two accuracies
/
7@ 00
,::::::::/,,/ /’/5’”‘[,[
% el

X o—o »‘ »e——8—— An on-policy rollout

s

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.



Approach: MRT - RL

1 Generate Partial Solution

<stop-think> </think>

Jr(n(: |20, %)) = 0.5

P—

|

|

|

Zjy1 Zjy1 Zj41 | <stop-think>

|

I </think>

: /\ o~
|

|

rn=1 5 =10 Tm =0 I Tme1 =1 Ty =1 Tom = 0

Compute Information Gain Bonus: I*(zj,1; x) = r—],(u(0: jlx))

Adjust Reward by Information Gain Bonus: 1’ = r + o - I”(zj+1; x)

24



(Subset of) Results: Our Approach (MRT)

DeepScaleR-1.5B (RL'd) DeepSeek-R1-Distill-1.5B

(trained on hard AIME-difficulty problems) (trained on general NuminaMATH data)

AMC 2023

AMC 2023 I I

AIME 2024 AIME 2025 AIME 2024 AIME 2025

%age performance gains
over base model
S =~ N WO B O

-2
@ VRT (Our approach) B outcome-reward RL (GRPO)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025. 25
Luo*, Tan* et al. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL. 2025.
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,"See: RL on Incorrect Synthetic |
| Data Scales the Efficiency of
|
|
i

Open Questions: Dense Rewards

\
1

1
[ - ] LLM Math Reasoning 8x. i
Computational cost \ NeurlPS 2024. y

» Estimating dense rewards requires rollouts, which are costly.
» Can we get more juice out of the same total FLOPs??

[The choice of the prover policy] e ————————— R
_ _ | See: Rewarding Progress: i

» The policy u determines the progress reward. | Scaling Automated Process |

> How should you choose this policy?? | Verifiers. (CLR2025.

[Other ways of implementing the same principle]

» Length curriculum and iterative training could be one other way
» Many open-source implementations kinda do this!

26
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.
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