
Optimizing Test-Time Compute
via

Meta Reinforcement Finetuning

Yuxiao Qu*, Matthew Y. R. Yang*, Amrith Setlur, Lewis Tunstall,
Edward Emanuel Beeching, Russ Salakhutdinov, Aviral Kumar

1

Test-Time Scaling for Large Language Models

prediction

2

Language model

input problem (x)

Test-Time Scaling for Large Language Models

prediction

3

Bigger language model

input problem (x)

Test-Time Scaling for Large Language Models

prediction

4

input problem (x)

Language model

longer responses, “more thinking”, self-correction, etc.

Bigger language model

input problem (x)

Finetuning LLMs is Critical for Test-Time Scaling

prediction

5

Base LLM

…

R
a
n
k
 u

s
in

g
 a

 v
e
ri
fi
e
r

Trained LLM

…

Sequential self-correction
(Qu et al. 2024, Kumar et al. 2024)

parallel sequential

Key idea: Finetune LLMs

to enable this behavior!

A Family of Test-Time Scaling Algorithms

6
Yao et al. Tree of Thoughts. NeurIPS 2023.

Training for test-time scaling: Train LLMs to implement these procedures

This training has

been done via:

• RL or SFT

• Dense vs sparse

supervision

• Different “types”

of training data

• ….

7

Desiderata: What Do We Want at Test Time

Desideratum 1: Don’t

spend too many tokens

on easy questions!

Question: 2+2 = ?

<think>

Okay, so I need to figure out what 2 plus 2 is. Let me start
by recalling basic addition. When you add two numbers,

you're combining their values. So if I have 2 apples and

someone gives me 2 more apples, how many apples do I

have in total?

Let me count them out. First, I have 1, 2 apples. Then I

add another 2 apples: 3, 4. So that makes 4 apples

altogether. Wait, is that right? Let me check again. 2 plus

2... If I take the number 2 and then add 2 more, it should

be one more than 2 plus 1, which is 3, so adding another
1 would make it 4. Yeah, that seems correct…….

8

Desiderata: What Do We Want at Test Time

Desideratum 2: Keep

making progress on hard

questions, even beyond

compute budget

Problem Setup: LLM Math Reasoning Problems

Steps = actions

reward = 1 if

answer is correct

Initial state

9

10

Do Current Models Enjoy these Desiderata?
➢ Easy problems: Make sure to be efficient

➢ Hard problems: Make sure to make constant progressShort answer: not really!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Experiment setup

Chop the thinking block in

DeepSeek-R1 and ask it

to produce best answer

11

Do Current Models Enjoy these Desiderata?
➢ Easy problems: Make sure to be token-efficient!

➢ Hard problems: Make sure to make constant progressShort answer: not really!

Majority voting

over solutions

Average accuracy

after different blocks

Experiment setup

Chop the thinking block in

DeepSeek-R1 and ask it

to produce best answer

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

12

Do Current Models Enjoy these Desiderata?
➢ Easy problems: Make sure to be token-efficient!

➢ Hard problems: Make sure to make constant progressShort answer: not really!

Majority voting

over solutions

Average accuracy

after different blocks Takeaway: Can make progress

by implementing the “algorithm”

of running a simple majority vote,

but it does not.

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

13

Formulation: How to Satisfy These Desiderata

Let’s start from the final goal

on test problems response sampled

from model (longer

than typical solution)

Total compute constraint

per problem

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

14

Formulation: How to Satisfy These Desiderata

But this compute

budget is fixed!

Can optimize this via:

➢ RL (like DeepSeek-R1): outcome-reward RL

➢ SFT / STaR: collect data, filter by correctness, maximize likelihood

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

15

Why is Outcome Reward + Fixed Budget Bad?

Allowed budget C0 Allowed budget C0

Easy problems: Both get

rewarded the same way

Hard problems: Neither

trace gets rewarded

(never on track)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

16

Formulation: “Budget-Agnostic” LLMs

Key idea: Incentivize the LLM to make progress regardless of the compute budget

Some segment of

the entire trace

Some dense reward to incentivize progress

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

17

Idea: What is Good Progress on New Problems?

Test-time token budget (H)

P
ro

b
a

b
il
it
y

o
f

s
u
c
c
e

s
s

0

1

Most progress (an oracle)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

18

Idea: What is Good Progress on New Problems?
P

ro
b

a
b
il
it
y

o
f

s
u
c
c
e

s
s

0

1

Most progress (an oracle)

We want this area to be as low as possible!

(i.e., a notion of cumulative regret)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Test-time token budget (H)

19

Inducing a Good Curve That Makes Progress

“Episodes” in the test-time stream

re
w

a
rd

0

1

We do not know this oracle

Key idea: Can still push up the

performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

20

Inducing a Good Curve That Makes Progress

“Episodes” in the test-time stream

re
w

a
rd

0

1

We do not know this oracle

Key idea: Can still push up the

performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

21

Inducing a Good Curve That Makes Progress

“Episodes” in the test-time stream

re
w

a
rd

0

1

We do not know this oracle

Key idea: Can still push up the

performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

22

Concrete Idea: Progress Reward Design

A “prover” policy that guesses the best answer

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

So far, we were using accuracy of the model

that aims to write out the solution given the episodes so far

Progress reward

Concrete Idea: Progress Reward Design

An on-policy rollout

rprg is the difference

of these two accuracies

𝜇

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

24

Approach: MRT - RL

Compute Information Gain Bonus: 𝑰𝝁 𝒛𝒋+𝟏; 𝒙 = 𝒓−𝑱𝒓 𝝁 𝟎: 𝒋 𝒙

Adjust Reward by Information Gain Bonus: 𝒓′ = 𝒓 + 𝛂 ∙ 𝑰𝝁 𝒛𝒋+𝟏; 𝒙

𝑥 𝑧0

1 Generate Partial Solution

𝑧1 𝑧1 𝑧𝑗

<stop-think> </think>

𝑱𝒓 𝝁 ∙ 𝒛𝟎:𝒋, 𝒙 = 𝟎. 𝟓

2 Compute Reward

3.1 Continue

𝑧𝑗+1 𝑧𝑗+1 𝑧𝑗+1 <stop-think>

</think>

3.2 Direct

𝑟1 = 1 𝑟2 = 0 𝑟𝑚 = 0 𝑟𝑚+1 = 1 𝑟𝑚+2 = 1 𝑟2𝑚 = 0

25

-2

-1

0

1

2

3

4

5

%
a

g
e

 p
e

rf
o

rm
a

n
c

e
 g

a
in

s

o
v
e

r
b

a
s

e
 m

o
d

e
l

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Luo*, Tan* et al. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL. 2025.

(Subset of) Results: Our Approach (MRT)

DeepSeek-R1-Distill-1.5B
(trained on general NuminaMATH data)

DeepScaleR-1.5B (RL’d)
(trained on hard AIME-difficulty problems)

AIME 2024 AIME 2025

AMC 2023

AMC 2023

AIME 2024 AIME 2025

Outcome-reward RL (GRPO)MRT (Our approach)

26

Open Questions: Dense Rewards

➢ Estimating dense rewards requires rollouts, which are costly.

➢ Can we get more juice out of the same total FLOPs??

Computational cost

The choice of the prover policy

➢ The policy 𝜇 determines the progress reward.

➢ How should you choose this policy??

Other ways of implementing the same principle

➢ Length curriculum and iterative training could be one other way

➢ Many open-source implementations kinda do this!

See: RL on Incorrect Synthetic

Data Scales the Efficiency of

LLM Math Reasoning 8x.

NeurIPS 2024.

See: Rewarding Progress:

Scaling Automated Process

Verifiers. ICLR 2025.

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

	Slide 1: Optimizing Test-Time Compute via Meta Reinforcement Finetuning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

