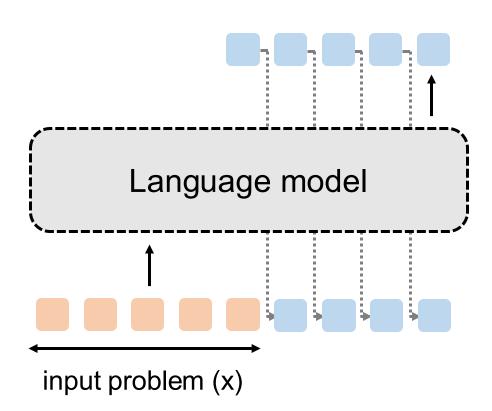
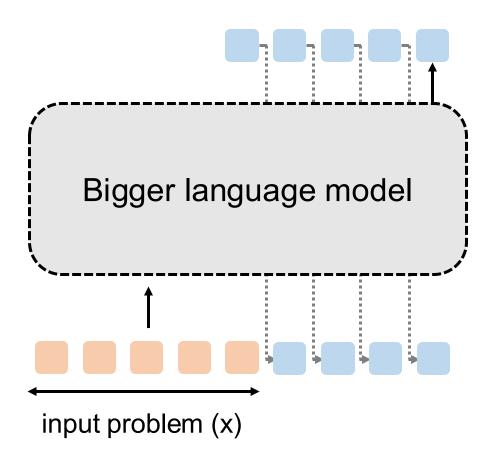
Optimizing Test-Time Compute via Meta Reinforcement Finetuning

Yuxiao Qu*, Matthew Y. R. Yang*, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Russ Salakhutdinov, Aviral Kumar

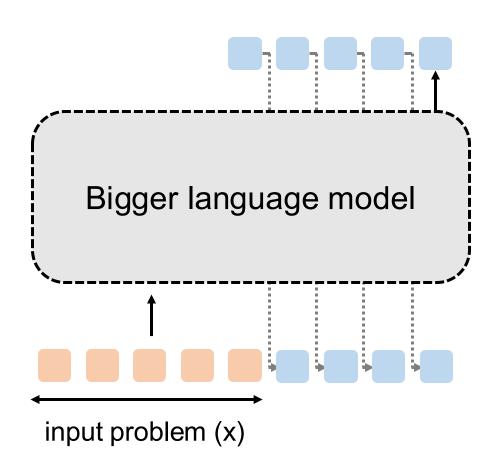
Test-Time Scaling for Large Language Models



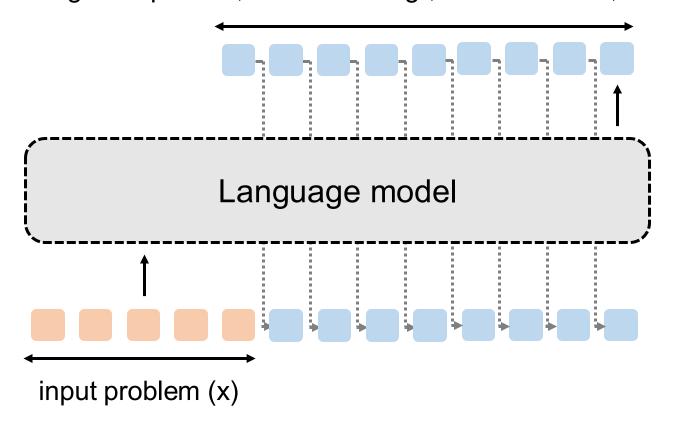
Test-Time Scaling for Large Language Models



Test-Time Scaling for Large Language Models



longer responses, "more thinking", self-correction, etc.

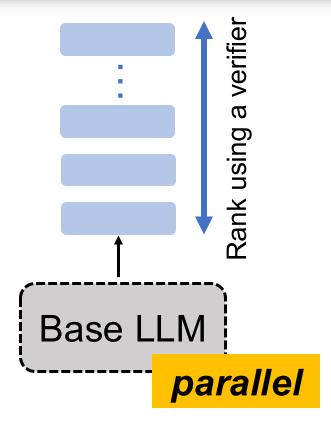


Finetuning LLMs is Critical for Test-Time Scaling

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

Charlie Snell^{♦, 1}, Jaehoon Lee², Kelvin Xu^{♠, 2} and Aviral Kumar^{♠, 2}

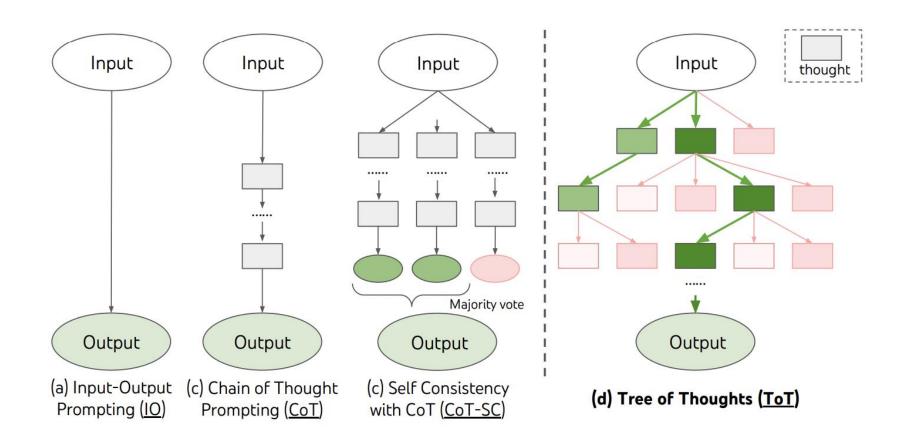
Key idea: Finetune LLMs to enable this behavior!



Sequential self-correction (Qu et al. 2024, Kumar et al. 2024) Trained LLM sequential

[◆]Equal advising, ¹UC Berkeley, ²Google DeepMind, [◆]Work done during an internship at Google DeepMind

A Family of Test-Time Scaling Algorithms



This training has been done via:

- RL or SFT
- Dense vs sparse supervision
- Different "types" of training data
-

Training for test-time scaling: Train LLMs to implement these procedures

Desiderata: What Do We Want at Test Time

Question: 2+2 = ?

<think>

Okay, so I need to figure out what 2 plus 2 is. Let me start by recalling basic addition. When you add two numbers, you're combining their values. So if I have 2 apples and someone gives me 2 more apples, how many apples do I have in total?

Let me count them out. First, I have 1, 2 apples. Then I add another 2 apples: 3, 4. So that makes 4 apples altogether. Wait, is that right? Let me check again. 2 plus 2... If I take the number 2 and then add 2 more, it should be one more than 2 plus 1, which is 3, so adding another 1 would make it 4. Yeah, that seems correct......

Desideratum 1: Don't spend too many tokens on easy questions!

Desiderata: What Do We Want at Test Time

Show that the inequality

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{|x_i - x_j|} \le \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{|x_i + x_j|}$$

holds for all real numbers x_1, x_2, \ldots, x_n .

Wait, but if we can bound sum $\operatorname{sqrt}(|x_i-x_j|) \leq \operatorname{sum} \operatorname{sqrt}(|x_i+x_j|)$, and we know that $\operatorname{sum} \operatorname{sqrt}(|x_i+x_j|) + \operatorname{sum} \operatorname{sqrt}(|x_i-x_j|) \leq 2 \operatorname{sum} \operatorname{sqrt}(|x_i|+|x_j|)$, then combining these would give $2 \operatorname{sum} \operatorname{sqrt}(|x_i-x_j|) \leq 2 \operatorname{sum} \operatorname{sqrt}(|x_i-x_j|) \leq 2 \operatorname{sum} \operatorname{sqrt}(|x_i-x_j|)$. But this is different from our original inequality. Hmm.

Alternatively, maybe consider that for each pair (i, j), $\operatorname{sqrt}(|\mathbf{x}_{-}\mathbf{i} + \mathbf{x}_{-}\mathbf{j}|) + \operatorname{sqrt}(|\mathbf{x}_{-}\mathbf{i} - \mathbf{x}_{-}\mathbf{j}|) \ge 2 \operatorname{sqrt}(|\mathbf{x}_{-}\mathbf{i}|)$, as a form of the arithmetic mean - geometric mean inequality? Let's test with $\mathbf{x}_{-}\mathbf{i} = 1$, $\mathbf{x}_{-}\mathbf{j} = 1$: $\operatorname{sqrt}(2) + 0 \approx 1.414 \ge 21 = 2$. No. $\mathbf{x}_{-}\mathbf{i} = 2$, $\mathbf{x}_{-}\mathbf{j} = 0$: $\operatorname{sqrt}(2) + \operatorname{sqrt}(2) \approx 2.828 \ge 2 \operatorname{sqrt}(2) \approx 2.828$. Equality, $\mathbf{x}_{-}\mathbf{i} = 3$, $\mathbf{x}_{-}\mathbf{j} = 1$: $\operatorname{sqrt}(4) + \operatorname{sqrt}(2) \approx 2 + 1.414 \approx 3.414 \ge 2 * \operatorname{sqrt}(3) \approx 3.464$. No, still less. So this inequality doesn't hold.

This is getting frustrating. Maybe I need to look for a different approach. Let's think about the original inequality again. It's symmetric in all x_i. Maybe consider some symmetry such as replacing x_i with -x_i. If we replace each x_i with -x_i, the left side becomes sum sqrt(|-x_i + x_j|) = sum sqrt(|x_j - x_i|) = same as

Desideratum 2: Keep making *progress* on hard questions, even beyond compute budget

Problem Setup: LLM Math Reasoning Problems

Initial state

Problem: Suppose a and b are positive real numbers with a > b and ab = 8. Find the minimum value of $\frac{a^2 + b^2}{a - b}$.

Ground truth solution: We can write
$$\frac{a^2+b^2}{a-b} = \frac{a^2+b^2-2ab+16}{a-b} = \frac{(a-b)^2+16}{a-b} = a-b+\frac{16}{a-b}$$
. By AM-GM, $a-b+\frac{16}{a-b} \geq 2\sqrt{(a-b)\cdot \frac{16}{a-b}} = 8$. Equality occurs when $a-b=4$ and $ab=8$. We

can solve these equations to find $a = 2\sqrt{3} + 2$ and $b = 2\sqrt{3} - 2$. Thus, the minimum value is 8.

Steps = actions

reward = 1 if answer is correct

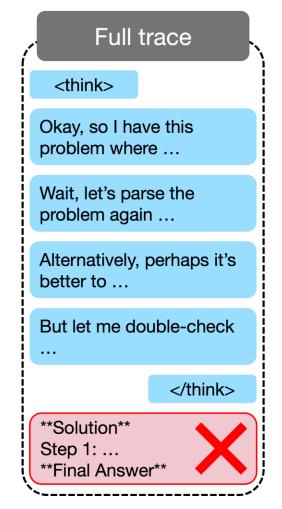
Do Current Models Enjoy these Desiderata?

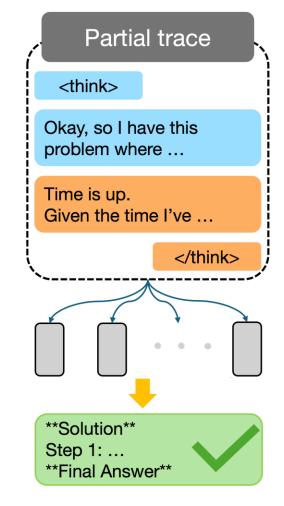
Short answer: *not really!*

Experiment setup

Chop the thinking block in DeepSeek-R1 and ask it to produce best answer

- **Easy problems:** Make sure to be efficient
- > Hard problems: Make sure to make constant *progress*

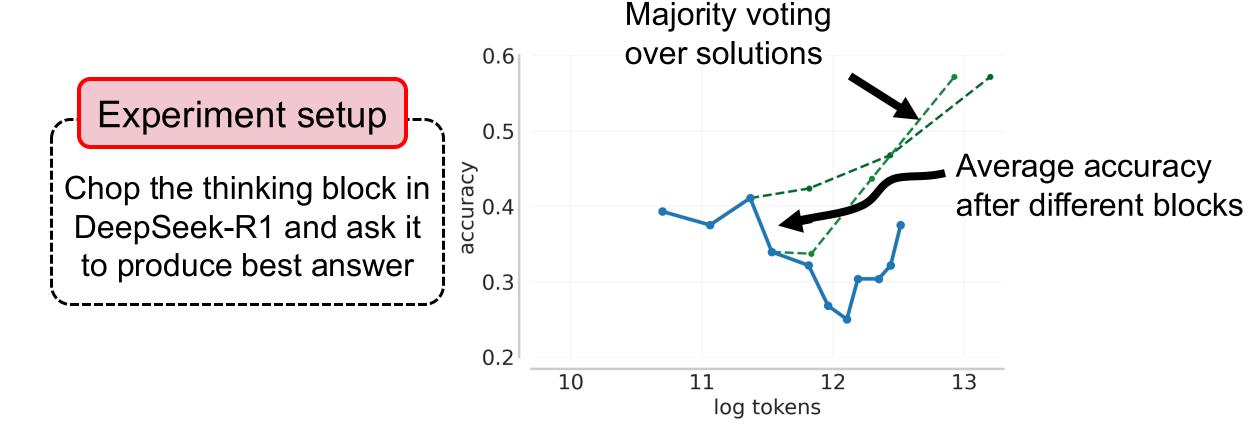




Do Current Models Enjoy these Desiderata?

Short answer: *not really!*

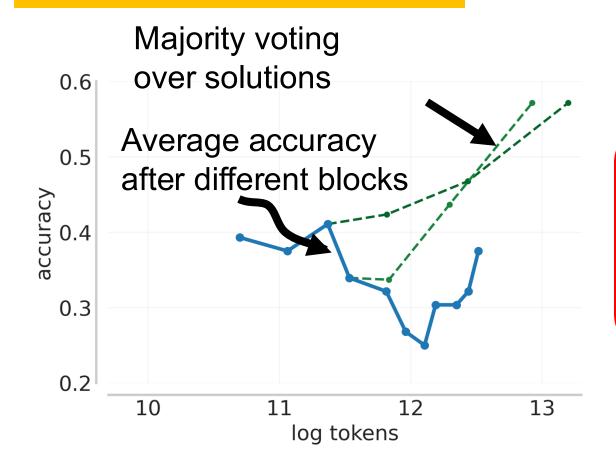
- **Easy problems:** Make sure to be *token-*efficient!
- > Hard problems: Make sure to make constant *progress*



Do Current Models Enjoy these Desiderata?

Short answer: *not really!*

- **Easy problems:** Make sure to be *token-*efficient!
- > Hard problems: Make sure to make constant *progress*



Takeaway: Can make progress by implementing the "algorithm" of running a simple majority vote, but it does not.

Formulation: How to Satisfy These Desiderata

Let's start from the final goal

$$\max_{\pi} \; \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\text{test}}} \left[\mathbb{E}_{\mathbf{z} \sim \pi(\cdot | \mathbf{x})} \left[r(\mathbf{x}, \mathbf{z}) \right] \right]$$

on test problems

response sampled from model (longer than typical solution)

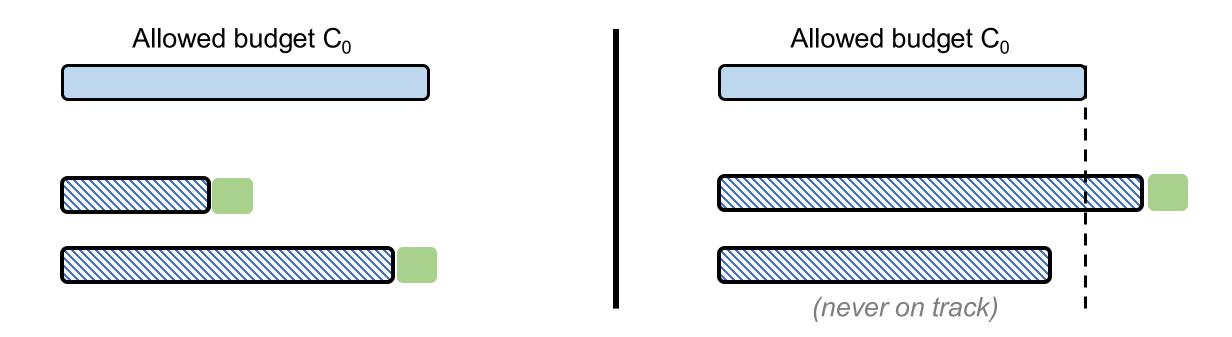
Total compute constraint per problem

Formulation: How to Satisfy These Desiderata

Can optimize this via:

- > RL (like DeepSeek-R1): outcome-reward RL
- > SFT / STaR: collect data, filter by correctness, maximize likelihood

Why is Outcome Reward + Fixed Budget Bad?



Easy problems: Both get rewarded the same way

Hard problems: Neither trace gets rewarded

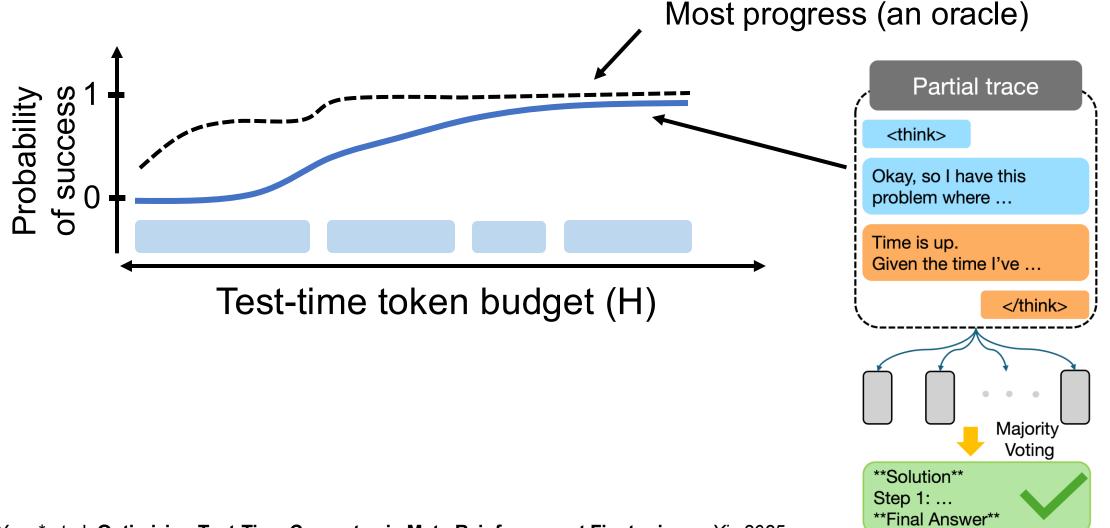
Formulation: "Budget-Agnostic" LLMs

Key idea: Incentivize the LLM to make progress regardless of the compute budget

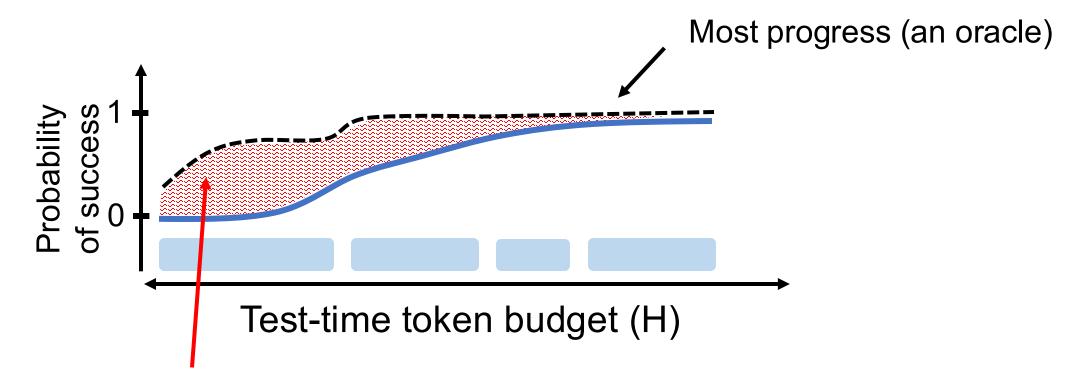
$$\max_{\pi} \ \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\text{train}}} \left[\mathbb{E}_{\mathbf{z} \sim \pi(\cdot | \mathbf{x})} \left[r(\mathbf{x}, \mathbf{z}) \right] \right] \text{ s.t. } \dots$$
 Some segment of the entire trace
$$r(\mathbf{x}, \mathbf{z}) + \sum_{i=1}^{H} r_{\text{prg}}(\mathbf{x}, \mathbf{z}_{0:i})$$

Some dense reward to incentivize progress

Idea: What is Good Progress on New Problems?

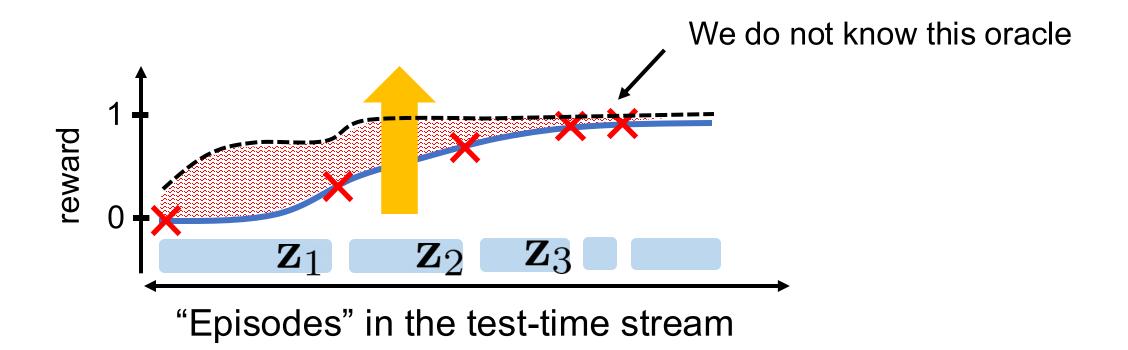


Idea: What is Good Progress on New Problems?



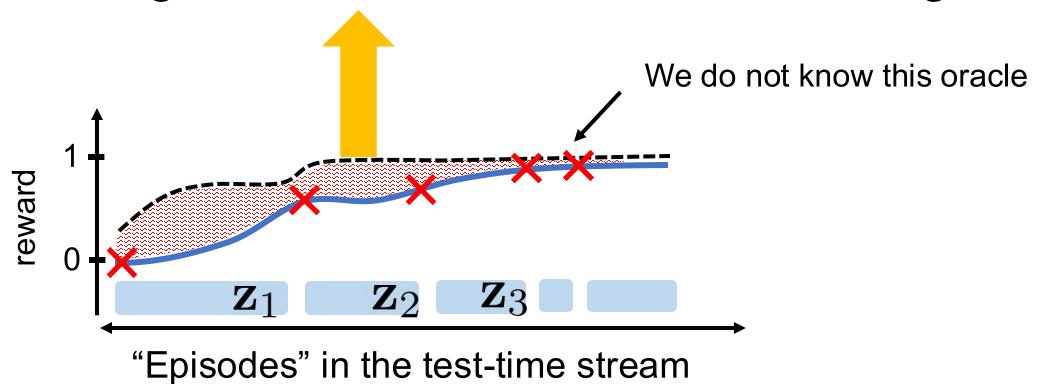
We want this area to be as low as possible! (i.e., a notion of cumulative regret)

Inducing a Good Curve That Makes Progress



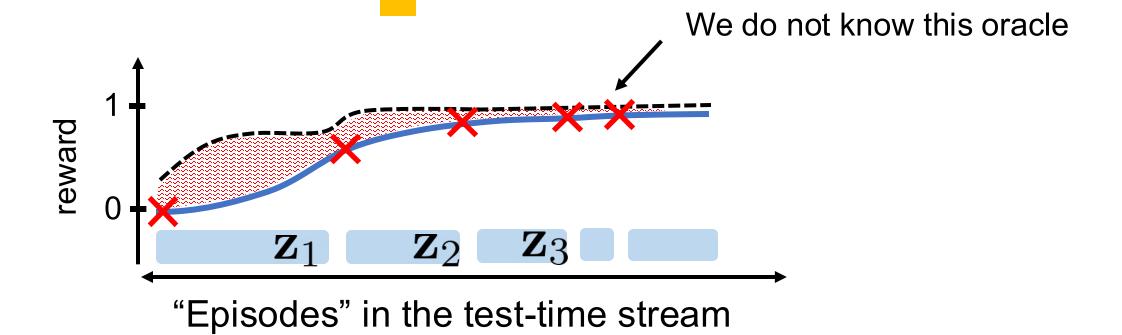
Key idea: Can still push up the performance after every episode!

Inducing a Good Curve That Makes Progress



Key idea: Can still push up the performance after every episode!

Inducing a Goo Curve That Makes Progress



Key idea: Can still push up the performance after every episode!

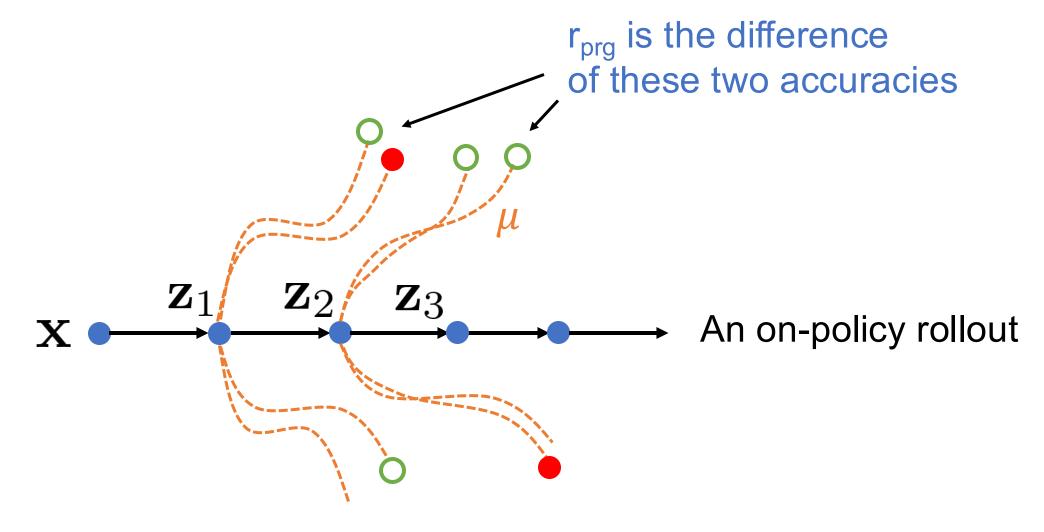
Concrete Idea: Progress Reward Design

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\text{train}}, \mathbf{z} \sim \pi(\cdot | \mathbf{x})} \left[\sum_{j} \nabla_{\pi} \log \pi(\mathbf{z}_{j} | \mathbf{x}, \mathbf{z}_{0:j-1}) \cdot (r(\mathbf{x}, \mathbf{z}) + \alpha \cdot r_{\text{prg}}(\mathbf{x}, \mathbf{z}_{0:j})) \right]$$

So far, we were using accuracy of the model that aims to write out the solution given the episodes so far

Progress reward A "prover" policy that guesses the best answer
$$r_{\mathrm{prg}}(\mathbf{x},\mathbf{z}_{0:j}) = J_r(\mu(\cdot|\mathbf{x},\mathbf{z}_{0:j})) - J_r(\mu(\cdot|\mathbf{x},\mathbf{z}_{0:j-1}))$$

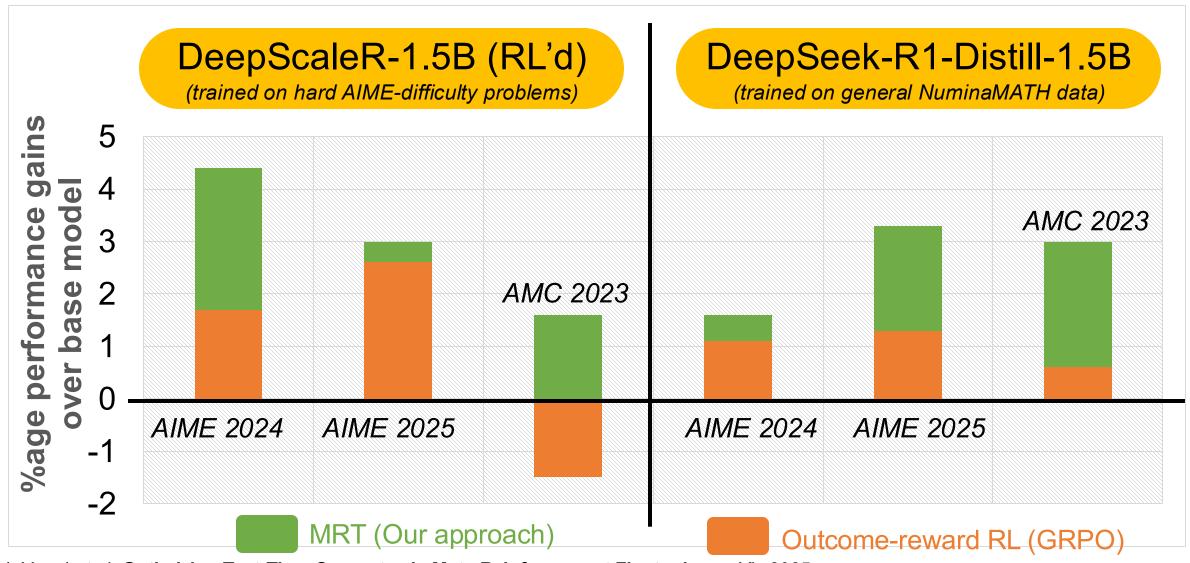
Concrete Idea: Progress Reward Design



Approach: MRT - RL 2 Compute Reward Generate Partial Solution <stop-think> </think> $J_r(\mu(\cdot|\mathbf{z}_{0:j},x))=0.5$ χ z_1 Z_1 z_0 3.2 Direct 3.1 Continue <stop-think> z_{j+1} z_{j+1} z_{j+1} </think> $r_m = 0$ $r_{m+1} = 1$ $r_{m+2} = 1$ $r_{2m}=0$ $r_1 = 1$ $r_2 = 0$ Compute Information Gain Bonus: $I^{\mu}(z_{j+1};x) = r - J_r(\mu(0;j|x))$

Adjust Reward by Information Gain Bonus: $r' = r + \alpha \cdot I^{\mu}(z_{j+1}; x)$

(Subset of) Results: Our Approach (MRT)



Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025. Luo*, Tan* et al. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL. 2025.

Open Questions: Dense Rewards

Computational cost

See: RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning 8x.

NeurIPS 2024.

- Estimating dense rewards requires rollouts, which are costly.
 - > Can we get more juice out of the same total FLOPs??

The choice of the prover policy

- \triangleright The policy μ determines the progress reward.
 - ➤ How should you choose this policy??

See: Rewarding Progress: Scaling Automated Process Verifiers. ICLR 2025.

Other ways of implementing the same principle

- Length curriculum and iterative training could be one other way
 - > Many open-source implementations kinda do this!