Optimizing Test-Time Compute
via
Meta Reinforcement Finetuning

Yuxiao Qu*, Matthew Y. R. Yang®*, Amrith Setlur, Lewis Tunstall,
Edward Emanuel Beeching, Russ Salakhutdinov, Aviral Kumar

Carnegie
Mellon
University

w . Hugging Face

Test-Time Scaling for Large Language Models

e

input problem (x)

Test-Time Scaling for Large Language Models

Sa
\

input problem (x)

Test-Time Scaling for Large Language Models

longer responses, “more thinking”, self-correction, etc.

\
\
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
r
I
I
I
Irll
—
]
4
]
]
]
)
]
]
snnnnnunnd
—

,———————————————————'————'————'——— —————————————————————

Bigger language model

’——————————~
p PSR ————

input problem (x) input problem (x)

Finetuning LLMs is Critical for Test-Time Scaling

Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters [Key idea: Finetune LLMS]

Charlie Snell* !, Jachoon Lee?, Kelvin Xu® ? and Aviral Kumar® 2 to e n a b I e th i S b e h avi O r!

‘Equal advising, luc Berkeley, ?‘Google DeepMind, *Work done during an internship at Google DeepMind

Sequential self-correction
(Qu et al. 2024, Kumar et al. 2024)

Rank using a verifier

——

sequential -

A Family of Test-Time Scaling Algorithms

Q)Q Input Input |np9 thought r
This training has
‘ .
] been done via:

| eed

N Majonty vote

(a) Input-Output (c) Chain of Thought (c) Self Consistency

= RLorSFT
 Dense vs sparse
supervision

« Different “types”
of training data

Prompting (I0) Prompting (CoT) wilth CoT [CoT-ST) (d) Tree of Thoughts (ToT)

Training for test-time scaling: Train LLMs to implement these procedures

Yao et al. Tree of Thoughts. NeurlPS 2023.

Desiderata: What Do We Want at Test Time
(@)

Question: 2+2 =?

<think>

Okay, so | need to figure out what 2 plus 2 is. Let me start
by recalling basic addition. When you add two numbers,
you're combining their values. So if | have 2 apples and
someone gives me 2 more apples, how many apples do |
have in total?

Let me count them out. First, | have 1, 2 apples. Then | 4] e)

add another 2 apples: 3, 4. So that makes 4 apples Desideratum 1: Don’t

SRl spend too many tokens
_On easy questions!

Desiderata: What

Do We Want at Test Time

@

)

Show that the inequality

anzn:\ﬂxz'—xﬂiizn:\/m"‘xﬂ

i=1 j=1 i=1 j=1
holds for all real numbers 1, x5, ..., x,.

Wait, but if we can bound sum sqrt(|x_i - x_j|) < sum sqrt(|x_i + x_j|), and we know that sum sqrt(|x_i + x_j|) +
sum sqrt(|x_i - x_j|) < 2 sum sqrt(|x_i| + |x_j|), then combining these would give 2 sum sqrt(|x_i - x_j|) <2 sum
sqrt(|x_i| + |x_j|), which would imply sum sqrt(|x_i - x_j|) < sum sqrt(|x_i| + [x_j|). But this is different from our

original inequality. Hmm.

Alternatively, maybe consider that for each pair (i, j), sqrt(|x_i + x_j|) + sqrt(|x_i - x_j|) = 2 sqrt(|x_i|), as a form
of the arithmetic mean - geometric mean inequality? Let's test with x_i=1,x_j=1:sqrt(2) +0=1.414 =21 =

2. No.x_i=2,x_j=0:sqrt(2) + sqrt(2) = 2.828 = 2sqrt(2) = 2.828. Equality. x_i=3, x_j = 1: sqrt(4) + sqrt(2) = 2 +
1.414 = 3.414 = 2*sqrt(3) = 3.464. No, still less. So this inequality doesn't hold.

This is getting frustrating. Maybe | need to look for a different approach. .et's think about the original
Inequatity again. IT's symmetric in all X_I. Maype consiaer some symmetry such as replacing x_i with -x_i. If

we replace each x_i with -x_i, the left side becomes sum sqrt(|-x_i + x_j|) = sum sqrt(|x_j - x_i|) = same as

PG GO gy [PPN - TN L., o] PRSI D T SR D DR st 1y J IPSUSI SSUR- | | VPSS S J PSS TR { | Wt e L R

Desideratum 2: Keep
making progress on hard
guestions, even beyond

9 compute budget y

Problem Setup: LLM Math Reasoning Problems

Initial state
Problem: Suppose a and b are positive real numbers with ¢ > b and ab = 8. Find the minimum
2 2
value of ©10-,
Ground truth solution: We can write 2 +22 = “2+b2a_2b“b+16 = ;’)szG =a—b+ 1% By

AM-GM, a — b+ 25 > 2\/ a—1b) 1% =8 Equahtyoccurs hena,—b—4andab— 8 We
can solve these equations to find a = 2v/3 + 2 and b = 2\/_ — 2./Thus, the minimum value is | 8 |.

\ reward = 1 if

. answer IS correct
Steps = actions

Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be efficient
Short answer: not really! » Hard problems: Make sure to make constant progress

. Full trace . g Partial trace .
<think> <think>
Okay, so | have this Okay, so | have this
problem where ...

[Experiment setup]

o

A
]
1
1
1
1
1
1
:
problem where ... H
1
1
1
|
1
1
1
|
1
|
1
]

{ \
:’ E E Wait, let’s parse the i Time is up.
. . . | problem again ...] Given the time I've ...
i Chop the thinking block in | | :
l r | | i its | </think
\ DeepSeek-R1 and ask it ! | . g
I I i |
=\ tO prOdUCG beSt answer ,= i But let me double-check i
i </think> i
i **Solution™* i **Solution**
i| Step 1: ... x ! Step 1: ... V
{(**Final Answer** | **Final Answer*

10
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be token-efficient!

Short answer: not really! » Hard problems: Make sure to make constant progress
Majority voting
0.6 over solutions
[Experiment setup] 0e \

[
I
I

Chop the thinking block in
DeepSeek-R1 and ask it
to produce best answer

/,/;/ Average accuracy
'/ after different blocks

accuracy
o
N

™ =
N -

10 11 12 13
log tokens

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be token-efficient!
Short answer: not really! » Hard problems: Make sure to make constant progress

Majority voting
0.6 over solutions

~

Takeaway: Can make progress

by implementing the “algorithm”

of running a simple majority vote,
but it does not.

_ J

accuracy
o
S

10 11 12 13
log tokens

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Formulation: How to Satisty These Desiderata

Let’s start from the final goal

max Ex.p,, Eoonx) [7(x,2)]

on test problems response sampled Total compute constraint
from model (Ionger per problem

than typical solution)

13
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Formulation: How to Satisfy These Desiderata

<

max B~ Do [4AZNW(,|X) r(x, Z)H s.t. Vx, {'.W(,|X)\z\ < ()

, ¥ ¥

max x~D,, ... [4Jz~7r(-|x) (X, Z)” S.t. ...

Can optimize this via:
» RL (like DeepSeek-R1): outcome-reward RL
» SFT/STaR: collect data, filter by correctness, maximize likelihood

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Why is Outcome Reward + Fixed Budget Bad?

Allowed budget C,

7
é
%
.

A HIIIHIHITHTHTIITIIy

: Easy problems: Both get \

. rewarded the same way)

Allowed budget C,,

(never on track)

r

.

Hard problems: Neither
trace gets rewarded

\

15

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Formulation: "Budget-Agnostic” LLMs

Key idea: Incentivize the LLM to make progress regardless of the compute budget

max MHx~p,. .. [4IZN7T(.|X) [?"(X,Z)H S.t. ...

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

l[dea: What is Good Progress on New Problems?

Most progress (an oracle)

, Partial trace .

? %1 { \
g 1 : i
-c% 8 i <think> i
< 2 i Okay, so | have this E
o N ! problem where ... :
| - 1 1
o o : :
i Time is up. !

< > i Given the time I've ...]

| i

\ [}

Test-time token budget (H)

</think>)

Majority
Voting

*Solution™
Step 1: ... V
Final Answer 17

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

l[dea: What is Good Progress on New Problems?

Most progress (an oracle)

Probability
of success

Test-time token budget (H)

We want this area to be as low as possible!
(i.e., a notion of cumulative regret)

18
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Inducing a Good Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang® et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

19

Inducing a Good Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang® et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

20

Inducing a Goo Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang® et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

21

Concrete |dea: Progress Reward Design

B Dovainszmn(clx) | OV logm(z5]x, z0:j—1) - (r(%,2) + o - Tprg (X, Z05))

J

So far, we were using accuracy of the model
that aims to write out the solution given the episodes so far

A “prover” policy that guesses the best answer

Tprg (X, Zo:5) = Jr((:]X, 20:5)) — Jr(p(-[X, Z0:j—1))

_

J

22
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Concrete |dea: Progress Reward Design

r... 1S the difference

prg
/ of these two accuracies
/
7@ 00
,::::::::/,,/ /’/5’”‘[,[
% el

X o—o »‘ »e——8—— An on-policy rollout

s

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Approach: MRT - RL

1 Generate Partial Solution

<stop-think> </think>

Jr(n(: |20, %)) = 0.5

P—

|

|

|

Zjy1 Zjy1 Zj41 | <stop-think>

|

I </think>

: /\ o~
|

|

rn=1 5 =10 Tm =0 I Tme1 =1 Ty =1 Tom = 0

Compute Information Gain Bonus: I*(zj,1; x) = r—],(u(0: jlx))

Adjust Reward by Information Gain Bonus: 1’ = r + o - I”(zj+1; x)

24

(Subset of) Results: Our Approach (MRT)

DeepScaleR-1.5B (RL'd) DeepSeek-R1-Distill-1.5B

(trained on hard AIME-difficulty problems) (trained on general NuminaMATH data)

AMC 2023

AMC 2023 I I

AIME 2024 AIME 2025 AIME 2024 AIME 2025

%age performance gains
over base model
S =~ N WO B O

-2
@ VRT (Our approach) B outcome-reward RL (GRPO)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025. 25
Luo*, Tan* et al. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL. 2025.

L & B N N & N N N &N _§B_§B N §N_§B N N _§N_§B_§N §N §N

,"See: RL on Incorrect Synthetic |
| Data Scales the Efficiency of
|
|
i

Open Questions: Dense Rewards

\
1

1
[-] LLM Math Reasoning 8x. i
Computational cost \ NeurlPS 2024. y

» Estimating dense rewards requires rollouts, which are costly.
» Can we get more juice out of the same total FLOPs??

[The choice of the prover policy] e ————————— R
_ _ | See: Rewarding Progress: i

» The policy u determines the progress reward. | Scaling Automated Process |

> How should you choose this policy?? | Verifiers. (CLR2025.

[Other ways of implementing the same principle]

» Length curriculum and iterative training could be one other way
» Many open-source implementations kinda do this!

26
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

	Slide 1: Optimizing Test-Time Compute via Meta Reinforcement Finetuning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

