Can DBNNs Robust to Environmental Noise for Resource-constrained Scenarios?

Wendong Zheng¹, Junyang Chen^{2,*}, Husheng Guo¹ and Wenjian Wang^{1,*}

- 1. Shanxi University
- 2. Shenzhen University

Background – Environmental Noise Robustness

Background – High efficient DBNNs

Advantages of DBNNs

◆ DBNNs with low power consumption and binary weight/activations have met the performance of the best modern DNNs (i.e., ResNet34) on the several image classification tasks.

	DBNN-based models	DNN-based models
Network Structure	XNOR, bitcount computational operations	Deep convolutional structure (e.g., ResNet18,ResNet34)
Complexity	Binary weight/activation matrix (i.e., Excitation :1, inhibition : -1)	Large scale floating point computation (i.e., float 64)
Performance	Low test accuracy	High test accuracy

➤ High performance device, such as RTX TITAN:

Edge devices with limited GPU resources, such as mobile phone:

Method-Overview

◆ The Overview of our proposed framework and description of variables is as follows:

Method

Theoretical results

> The robustness of DBNNs and tightness under environmental noise is as follows:

Upper bound

Theorem 4.2. For L-layer DBNNs against noise perturbations, we can derive the upper bound of robustness for the discrepancy between two classification outcomes (i.e., C_1 and C_2) as follows:

$$F_{W_{b}}^{C_{1}}(\hat{x}) - F_{W_{b}}^{C_{2}}(x) \leq (\prod_{l=1}^{L-1} \alpha_{l}\beta_{l}) \cdot \|W_{b;C_{1}}^{L} - W_{b;C_{2}}^{L}\|_{1} \cdot \prod_{l=1}^{L-1} \|(W_{b}^{L-l})^{T}\|_{1,\infty} \prod_{M=2}^{N} \|(W_{b}^{M})^{T}\|_{1,\infty} \|\hat{h}_{B}^{M-1} - h_{B}^{M-1}\|_{\infty} , \qquad \frac{\prod_{j=1}^{Q} \|w_{b}^{j}\|_{1,\infty}}{\prod_{j=1}^{Q} L_{lip}^{j}} \leq \frac{k \cdot \sqrt{n}}{\|W_{b}^{j}\|_{2} \cdot (\gamma^{j-Q})^{2}} \cdot \max \frac{\|x\|_{\infty}}{\|x\|_{1}} . \quad (16)$$

Tightness

Corollary 4.3. According to Eqn. 12 and Eqn. 15, we can determine the tightness ratio of Q binary convolution layers between our study and previous work (i.e., LCR) (Shang et al., 2022) under noise perturbation as follows:

$$\frac{\prod_{j=1}^{Q} \|w_b^j\|_{1,\infty}}{\prod_{j=1}^{Q} L_{lip}^j} \le \frac{k \cdot \sqrt{n}}{\|W_b^j\|_2 \cdot (\gamma^{j-Q})^2} \cdot \max \frac{\|x\|_{\infty}}{\|x\|_1} . \tag{16}$$

Summary

In particular, the weight is a key variable in the update process that is easy to control and understanding during the training phase.

Method-training algorithm

• Robust training for DBNNs by using our targeted objective function is as follows:

Objective function

$$\mathcal{L}_p = \delta * \prod_{j=1}^Q \alpha \|W_b^j\|_{1,\infty} ,$$

Given a classification-based objective function \mathcal{L}_{total} , we design a robustness loss function inside \mathcal{L}_{total} through $L_{1,\infty}$ -norm constrain as

(18)
$$\mathcal{L}_{total} = \mathcal{L}_{mlc}(X, Y) + \mathcal{L}_p , \qquad (19)$$

where $\mathcal{L}_{mlc}(X,Y)$ is the traditional cross-entropy loss function for multiple classification tasks. Here, the X denotes the input image signal and Y denotes the target label. Fur-

Experimental Setups

Execution Environment

- OS: Linux Ubuntu 18.04
- □ GPU: A800 * 1 & RTX 3090 * 1
- ☐ Software of IDE: Anaconda3, Spyder 5.2
- □ Programming language: Python 3.9, PyTorch 1.13,

Environmental Noise with SNR

- Noise randomly applied to pixels at random locations with middle Signal to Noise Ratio (SNR) levels.
- The environmental noise perturbations on each test sample is $\varepsilon = [1/255, 8/255]$ both on CIFAR-10 CIFAR-100 tasks.

Experimental Results

1. Main Results

Table 2. Robustness comparison between our approach and popular BNN-based methods against environmental noise on the CIFAR-10 and CIFAR-100 datasets. Here, ↑ denotes the proposed method can improve the robustness of the existing BNN-based methods.

Datasets Scenario	Cooperies	Doolshanas	Methods FP32 (clean) DoReFa DoReFa+our BiReal Bireal+our ReAct ReAct+our IRNet IRNet+our								
	Scenarios	Backbones	FP32 (clean)	DoReFa	DoReFa+our	BiReal	Bireal+our	ReAct	ReAct+our	IRNet	IRNet+our
CIFAR-10 With Noise	With Noise	ResNet18	94.82	91.55	92.27↑	91.20	93.21↑	91.40	93.04↑	91.41	93.64
	ResNet34	94.17	85.16	87.04↑	87.80	90.13↑	87.87	89.00↑	87.88	88.31	
CIFAR-100 With Noise	With Maisa	ResNet18	72.61	65.15	67.21↑	65.35	68.84↑	66.01	68.26↑	65.24	70.04↑
	ResNet34	71.52	60.37	61.16↑	63.76	64.69	60.48	63.81↑	60.61	61.71	

Table 3. Robustness comparison between our strategy and three Binary Convolution structure against environmental noise on the bioelectricity series classification task.

Performance	Methods						
	FP32(clean)	IRConv	IRConv+our	BirealConv	BirealConv+our	AdaBinConv	AdaBinConv+our
Test Acc. with Noise	97.1	87.21	88.36↑	88.66	89.51↑	93.13	93.72↑

Experimental Results

2. Visualization results

Conclusion

◆Summary highlights conclusion:

- ➤ Based on our theoretical findings, targeted objective function that penalizes the binary weights of DBNNs during the training process.
- ➤ Our proposed bounds more compact than state-of-the-art baselines.

Thank you very much for your patience, if you have any questions please do not hesitate to contact me via the email (wendongz@sxu.edu.cn).

