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Linear RNINs enable efficient sequence modeling

| Linear |

Competitive alternative to full self-attention

><N]ayers
= Fast training with conv/parallel scan -
= | ow-latency inference inrecurrent mode  heyq = diag(A) O hy + BTugyq
Strong signal processing capabilities
= Generalize to different inference rates Xpp1 = CTheyq + diag(D) © upsq o[

==

Drop

Tri Dao and Albert Gu. Transformers are SSMs: generalized models and efficient algorithms through structured state space duality. ICML 2025, Vol. 235. JMLR.org, Article 399, 10041-10071.
Smith, J. T. H,, Warrington, A., and Linderman, S. W.Simplified state space layers for sequence modeling, ICLR 2023, Kigali Rwanda, Mayi-5, 2023
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Neuromorphic hardware offers a compelling match
for sparse linear RNNs

Neuro cores

= Emerging neuromorphic chips provide Parallel off-chip
. ) 10 interfaces
energy-efficient support for:
= Sparse matrix-vector multiply

= Sparse activations with event-driven
computation

= Stateful neurons via compute-memory
iINntegration
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= Example use cases
= Audio denoising

8 chips 16 chips 128 chips 1152 chips

= _anguage modeling
Intel Loihi 2 neuromorphic processor form factors
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Research Questions

1. Do highly sparse linear RNNs outperform dense linear
RNNs across different inference compute budgets”?

2. Can fixed-point guantization compress sparse linear
RNNs without damaging the network’s performance?

3. Canunstructured sparsity and fixed-point guantization be
translated into latency and energy advantages on
neuromorphic hardware?
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S5 Compression Pipeline: Sparsity

Architecture & Data
= Weight sparsity
= |terative Magnitude Pruning gradually updates Training
the sparsity masks during training to reach a
target sparsity
= |t works better than one-shot pruning at high Dense FP32 S5
sparsity levels
lterative pruning (90%)
= Activation Sparsity RelUfication
= Rel_Ufication: replaced GELU non-linaerity with
RelLU and introduced additional Rel_LUs before Sparse FP32 S5

key linear layers

= Both interventions are applied with a single
fine-tuning run, starting from a pre-trained
dense model

[2310.04564] Rel_U Strikes Back: Exploiting Activation Sparsity in Large Language Models
[2304.14082] JaxPruner: A concise library for sparsity research
[1710.01878] To prune, or not to prune: exploring the efficacy of pruning for model compression
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https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/1710.01878

Key Result I: unstructured sparse models are at the
efficiency-performance Pareto front
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Pareto fronts for S5 network audio denoising quality (SI-SNR) as a function of effective compute (left) and memory footprint (right) on
the Intel N-DNS test set. S5 networks with weight and activation sparsity (green) exhibit a large domain of Pareto optimality versus
dense S5 networks (orange). Number annotations enumerate increasing S5 dimensionality configurations, from 500 kto 4 M
parameters. Dashed horizontal like marks SI-SNR of Spiking-FullSubNet XL, the previous state-of-the-art model. The horizontal arrows
highlight models used for hardware deployment, the diagonal arrows highlight models of the same width.
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S5 Compression Pipeline: Quantization

= | oihi 2 requires fully quantized computation

= Precision: 8bit for weights, 16bit for activations
and diagonal components

= [hree steps
= Quantization-aware training (optional)
= Conversion to static quantization

= Fixed-point arithmetic (simulates execution on
the chip)

[2406.09477] O-S5: Towards Quantized State Space Models
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Architecture & Data

Training

Dense FP32 S5

lterative pruning (90%)
Rel.Ufication
Quantization-aware training

Sparse Quantized S5

Static quantization
Fixed-point conversion

Sparse FXP S5



https://arxiv.org/abs/2406.09477

Key Result 2: sparse models can be converted to fixed-
point with small accuracy degradation

QAT significantly reduces the FP to FXP gap Sparse wider models are more resilient to quantization
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Impact of quantizationinterventions on Test SI-SNR and memory footprint, with and without quantization-aware training, for model
variant sparse-6.
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S5 Compression Pipeline: Hardware Deployment

Architecture & Data
= Real-time audio de-noising requires each token

to be processed within 8ms Treliie
= Parallelization on sequence length not possible!

- VV_e implement the sparse S5 model on Loihi Dense FP32 S5
using the new NxKernel AP

Deploy Jetson Orin Nano

lterative pruning (90%)
= Benchmark latency, energy, and throughput Rel Ufication

against a dense FP32 JAX implementation on a Quantization-aware training

Jetson Orin Nano
Sparse Quantized S5

Static quantization
Fixed-point conversion

Sparse FXP S5 Deploy Intel Loihi 2
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Key Result 3: theoretical gains from sparsity can be
translated in power and performance advantages

Mode Latency (]) Energy (|) Throughput (1)

Token-by-token 1209x 35x
Intel Loihi 27 Fall-Through 76 ps 13 uJ/tok 13178 tok/s
Jetson Orin Nano* ~ Recurrent 1-step (b = 1) 2 688 s 15724 uJ /tok 372 tok/s
Jetson Orin Nano¥  Recurrent 10-step (b = 1) 2 1936 uJ /tok 3103 tok/s
Jetson Orin Nano*  Recurrent 100-step (b = 1) 0653 ps 626 uJ /tok 9516 tok/s

Jetson Orin Nano? Recurrent scan (b = 1) 236 717 ps 404 uJ /tok 15845 tok/s

Sample-by-sample
Intel Loihi 2f Pipeline 60.58ms  185.80mJ/sam 16.58 sam /s
Jetson Orin Nano? Scan (b= 1) 233.48ms 1512.60 m.J/sam 4.28 sam/s
Jetson Orin Nano* Scan (b = by ) 226.53 ms 5.89mJ/sam  1130.09sam/s

Power and performance results* . The Loihi 2 is running a sparse and quantized S5 model, while the Jetson Orin Nano is running a
smaller dense S5 model that reaches similar test performance. All measurements are averaged over 8 random samples from the test
set, each containing 3750 steps.

* Loihi 2 workloads were characterized on an Oheo Gulch system with N3Cl-revision Loihi 2 chips running NxCore 2.5.8 and NxKernel 0.2.0 with on-chip IO unthrottled sequencing of inputs. Researchers interested to run S5 on Loihi 2 can gain
access to the software and systems by joining Intel’'s Neuromorphic Research Community. * Jetson workloads were characterized on an NVIDIA Jetson Orin Nano 8GB running Jetpack 6.2, CUDA 12.4, JAX 0.4.32, using the MAXN SUPER power
mode; energy values are computed based onthe TOT power as reported by jtop 4.3.0. The batch size bmax = 256 was chosen to be the largest that fits into memory. *Performance results are based on testing as of January 2025 and may not reflect
all publicly available security updates; results may vary
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