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Linear RNNs enable efficient sequence modeling

• Competitive alternative to full self-attention

• Fast training with conv/parallel scan

• Low-latency inference in recurrent mode

• Strong signal processing capabilities

• Generalize to different inference rates
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Neuromorphic hardware offers a compelling match
for sparse linear RNNs

• Emerging neuromorphic chips provide 
energy-efficient support  for:

• Sparse matrix-vector multiply

• Sparse activations with event-driven 
computation

• Stateful neurons via compute-memory 
integration

• Example use cases
• Audio denoising

• Signal processing

• Language modeling
Intel Loihi 2 neuromorphic processor form factors

Intel Loihi 2 computational model
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Research Questions

1. Do highly sparse linear RNNs outperform dense linear 
RNNs across different inference compute budgets?

2. Can fixed-point quantization compress sparse linear 
RNNs without damaging the network’s performance?

3. Can unstructured sparsity and fixed-point quantization be 
translated into latency and energy advantages on 
neuromorphic hardware?
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Architecture & Data

[2310.04564] ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models
[2304.14082] JaxPruner: A concise library for sparsity research
[1710.01878] To prune, or not to prune: exploring the efficacy of pruning for model compression

Training

S5 Compression Pipeline: Sparsity

Dense FP32 S5

Iterative pruning (90%)
ReLUfication

Sparse FP32 S5

• Weight sparsity
• Iterative Magnitude Pruning gradually updates 

the sparsity masks during training to reach a 
target sparsity

• It works better than one-shot pruning at high 
sparsity levels

• Activation sparsity
• ReLUfication: replaced GELU non-linaerity with 

ReLU and introduced additional ReLUs before 
key linear layers

• Both interventions are applied with a single 
fine-tuning run, starting from a pre-trained 
dense model

https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/1710.01878
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Key Result 1: unstructured sparse models are at the 
efficiency-performance Pareto front

Pareto fronts for S5 network audio denoising quality (SI-SNR) as a function of effective compute (left) and memory footprint (right) on 
the Intel N-DNS test set. S5 networks with weight and activation sparsity (green) exhibit a large domain of Pareto optimality versus 

dense S5 networks (orange). Number annotations enumerate increasing S5 dimensionality configurations, from 500 k to 4 M 
parameters. Dashed horizontal like marks SI-SNR of Spiking-FullSubNet XL, the previous state-of-the-art model. The horizontal arrows 

highlight models used for hardware deployment, the diagonal arrows highlight models of the same width.

2x 37%
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Architecture & Data

[2406.09477] Q-S5: Towards Quantized State Space Models

Training

S5 Compression Pipeline: Quantization

Dense FP32 S5

Iterative pruning (90%)
ReLUfication
Quantization-aware training

Sparse Quantized S5

• Loihi 2 requires fully quantized computation

• Precision: 8bit for weights, 16bit for activations 
and diagonal components

• Three steps
• Quantization-aware training (optional)

• Conversion to static quantization

• Fixed-point arithmetic (simulates execution on 
the chip)

Static quantization
Fixed-point conversion

Sparse FXP S5

https://arxiv.org/abs/2406.09477
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Key Result 2: sparse models can be converted to fixed-
point with small accuracy degradation

Impact of quantization interventions on Test SI-SNR and memory footprint, with and without quantization-aware training, for model 
variant sparse-6. 

QAT significantly reduces the FP to FXP gap Sparse wider models are more resilient to quantization

-8.3%

-6.6%
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Architecture & Data

Training

S5 Compression Pipeline: Hardware Deployment

Dense FP32 S5

Iterative pruning (90%)
ReLUfication
Quantization-aware training

Sparse Quantized S5

Static quantization
Fixed-point conversion

Sparse FXP S5 Intel Loihi 2

Jetson Orin NanoDeploy

Deploy

• Real-time audio de-noising requires each token 
to be processed within 8ms

• Parallelization on sequence length not possible!

• We implement the sparse S5 model on Loihi 
using the new NxKernel API

• Benchmark latency, energy, and throughput 
against a dense FP32 JAX implementation on a 
Jetson Orin Nano
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Key Result 3: theoretical gains from sparsity can be 
translated in power and performance advantages

† Loihi 2 workloads were characterized on an Oheo Gulch system with N3C1-revision Loihi 2 chips running NxCore 2.5.8 and NxKernel 0.2.0 with on-chip IO unthrottled sequencing of inputs. Researchers interested to run S5 on Loihi 2 can gain 
access to the software and systems by joining Intel’s Neuromorphic Research Community. ‡ Jetson workloads were characterized on an NVIDIA Jetson Orin Nano 8GB running Jetpack 6.2, CUDA 12.4, JAX 0.4.32, using the MAXN SUPER power 
mode; energy values are computed based on the TOT power as reported by jtop 4.3.0. The batch size bmax = 256 was chosen to be the largest that fits into memory. ∗Performance results are based on testing as of January 2025 and may not reflect 
all publicly available security updates; results may vary

Power and performance results∗ . The Loihi 2 is running a sparse and quantized S5 model, while the Jetson Orin Nano is running a 
smaller dense S5 model that reaches similar test performance. All measurements are averaged over 8 random samples from the test 

set, each containing 3750 steps. 

35x 1209x 35x
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