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Introduction

* The Vision: Truly General-Purpose Robots
* Open-ended multi-modal embodied task interpretation and solving
* Instruct agents with natural language or videos
* Adapt to out-of-distribution tasks seamlessly

* Learn without needing hand-crafted rewards for every single task

* Using Foundation Models (FMs) to interpretate the multi-modal tasks?

* FMs are not grounded into the embodied domain and the physical world




Introduction

* The Gap: High-Level "Brains" vs. Low-Level "Physics Engines"
* Foundation Models - The "Scholar"
» Strengths: Rich world knowledge, understands complex text/video prompts
* Weakness: Not grounded in the physical world. Doesn't know "how to act".
* World Models - The "Artisan"
» Strengths: Models physical dynamics, efficient for control via imagination.

* Weakness: Cannot understand open-ended tasks. Requires per-task reward engineering.

* Fundamental Question: How can we bridge the gap between high-level semantic
understanding and low-level physical control?



Method Overview

* Our Solution: Building a Bridge between FMs and WMs with FOUNDER

 We ground FM task representations into actionable goal states within the WM.

This enables open-ended task solving in a reward-free, model-based manner.
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Problem Setting

* The agent is given

* A Reward-free trajectory offline dataset, consisting of observations (images)
and actions, pre-collected from the target embodied environment

* A Vision Language Model (VLM)

* The agent cannot interact with the environment or obtain the
ground-truth reward

e Offline + Visual + Reward-Free + Multi-Task



Method

* Phase 1: Pretraining the WM and the Mapping Function The mapping function translates the abstract
"what" of a task (VLM representation e) into a
concrete "where" in the world model's state
space (the inferred corresponding WM state Z)

* We first learn a Dreamer-V3 style WM trained on the
offline dataset

e Then we learn a mapping function: Z ~ Q(:| e) by
aligning the embeddings of VLM and WM on the offline
dataset, using an auto-encoder structure
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* External VLM embeddings e, can be mapped into

corresponding WM goal states: z; ~ Q, (-l eg)



Method

* Phase 2: Behavior Learning

* Once we have a goal state in the WM, all we need
is to specify the reward function used to guide
policy learning towards the goal.

* We propose using temporal distance as the
reward signal.

 We learn a temporal distance prediction model
within the WM that predicts how many steps it
takes to get from one state to another. This is also
done in pretraining.
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Method

* Phase 2: Behavior Learning Action model: a; ~ m(a; | z, z4)
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Experiments: Language Tasks

Superior Performance:
Consistently outperforms prior
methods on multi-task visual
control benchmarks.

Table 1. Normalized test performance of FOUNDER and baselines on DMC and Kitchen benchmarks. Mean scores (higher is better) with
standard deviation are recorded across 6 seeds for each task.

Task GenRL WM-CLIP GenRL-TempD FOUNDER w/o TempD FOUNDER
Cheetah Stand 093 +0.03 0.93+0.03 0.42 + 0.04 091 +0.01 1.02 + 0.01
Cheetah Run 0.68 £0.06 0.51+0.04 0.37 + 0.06 0.21 +£0.01 0.81 + 0.02
Cheetah Flip -0.04 +£0.01  -0.11 £0.11 0.06 £+ 0.05 -0.26 + 0.01 0.97 + 0.02
Walker Stand 0.81 £0.16  1.01 + 0.02 0.92 + 0.06 1.02 + 0.01 1.01 + 0.02
Walker Walk 095 +0.02 095+ 0.03 0.42 +0.10 0.19 + 0.02 0.94 + 0.04
Walker Run 081 +0.02 0.69+0.05 0.68 £ 0.03 0.21 £ 0.01 0.78 + 0.04
Walker Flip 048 £0.04  0.59 + 0.04 0.50 £ 0.04 0.28 +£0.02 0.47 £0.03
Stickman Stand 0.60 +0.11  0.41 4+ 0.06 0.49 + 0.05 0.53 +0.04 0.91 + 0.04
Stickman Walk 0.83+£0.03 0.69+0.13 0.84 £+ 0.07 0.26 +0.03 0.91 + 0.03
Stickman Run 038 +£0.03 037+0.04 0.38 +0.03 0.17 £ 0.00 0.48 £+ 0.02
Stickman Flip 029 +0.05  0.62 + 0.03 0.38 + 0.04 0.25+0.03 0.41+0.03
Quadruped Stand 095+0.06 0.84 +0.20 0.97 + 0.04 0.99 + 0.02 0.98 + 0.01
Quadruped Walk 0.73 £0.19 0.64 +0.21 0.60 + 0.17 0.51 +0.02 0.90 + 0.05
Quadruped Run 0.72+021 058+0.13 0.51 +0.09 0.52 +0.01 0.94 + 0.03
Kitchen Light 0.00£0.00 0.35+048 0.92 £0.28 1.00 £ 0.00 097 +£0.18
Kitchen Slide 0.62+0.49  1.00 + 0.00 1.00 + 0.00 097 +0.18 1.00 + 0.00
Kitchen Microwave  1.00 +0.00  0.63 + 0.48 1.00 + 0.00 0.98 + 0.13 1.00 + 0.00
Kitchen Burner 035+048 0.10+0.30 0.63 £0.48 1.00 £ 0.00 0.60 + 0.49
Kitchen Kettle 035+048 0.07+£0.25 0.05 £0.22 0.05 £0.22 0.33 +£ 047
Overall 0.60 0.57 0.59 0.52 0.81




Experiments: Cross-domain Video Tasks
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oar Figure 2. Normalized evaluation performance on cross-embodiment tasks built upon DMC. Each row corresponds to one of the Run or

Flip tasks, while each column represents the domain in which the agent is evaluated. Each subplot presents the results of respectively
using videos from the remaining two domains as task prompts. This yields 6 domain combinations: (Cheetah, Walker), (Cheetah,
a Stickman), (Walker, Cheetah), (Walker, Stickman), (Stickman, Cheetah), and (Stickman, Walker), each evaluated on Run or Flip, totaling
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Figure 3. Performance of FOUNDER and baselines over 4 seeds on 01 01- oosl 02 -

two tasks in Kitchen. The agent’s observations is captured from oo == ji— i 0.00 00- 0.0-

the Main viewpoint, while task video prompts are provided from S Geohl. NEWIRCLE W CeoRlTamel WA FOUNDERwiskmpD- WM FOUNDER

the Right or TOp viewpoints, yielding 4 cross-view tasks. Figure 4. Performance evaluation of FOUNDER and baselines over 4 seeds across 5 cross-viewpoint video tasks in DMC. Visualizations of

video prompts indicating the task semantics and the agent’s observation in the corresponding environment is presented at first row.




Experiments: Reward Evaluation

Table 2. Evaluation of the consistency between learned pseudo

Consistent Reward: rewards and ground-truth rewards, averaged on 7 tasks in DMC.

FOUNDER'’s learned reward shows strong The results for each task are shown in Appendix D .4.

correlation with ground-truth rewards. Methods Corr! Regret| Precisiont Recallf F11
GenRL 0.12  0.37 0.47 0.44 044
WM-CLIP 0.40 0.26 0.61 0.69 0.63
GenRL-TempD 0.05 0.75 0.46 046 0.40
FOUNDER w/o TempD -0.02  0.90 0.16 0.15 0.15
FOUNDER 0.54 0.07 1.0 047 0.59

For policy learning based on our assigned pseudo-rewards, avoiding the misclassification
of low-reward behavior as high-reward is far more critical than identifying all high-reward
behaviors, as mistakenly favoring low-reward behaviors can lead to reward hacking and
undesirable outcomes. In this context, precision outweighs recall.



Experiments: Minecraft

]

Superior Performance:

FOUNDER also outperforms baselines on
this harder open-ended environment
with more challenging task instructions
and complex observations
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Figure 5. Performance of FOUNDER and baselines over 3 seeds across 5 tasks in Minecraft during behavior learning. Each task 1s specified
in a text prompt. The solid curves and the shaded region indicate the average episodic success rates and the 95% confidence intervals

across different runs. We apply a moving average to smooth the curves.




THANK YOU!

Project Website

Contact: wangyc@lamda.nju.edu.cn



https://sites.google.com/view/founder-rl
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