

A General Graph Spectral Wavelet Convolution via Chebyshev Order Decomposition

Nian Liu¹, Xiaoxin He¹, Thomas Laurent², Francesco Di Giovanni³, Michael M. Bronstein^{3,4}, Xavier Bresson¹

> ¹National University of Singapore, ²Loyola Marymount University ³University of Oxford, ⁴AITHYRA, Austria

□ Convolution Theorem

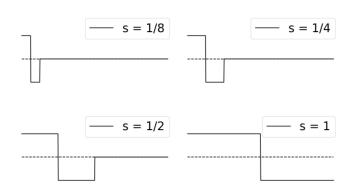
$$\kappa * X = F^{-1}(F(\kappa) \cdot F(X))$$
Inverse Transform
Transform

□ Classical Graph Convolution

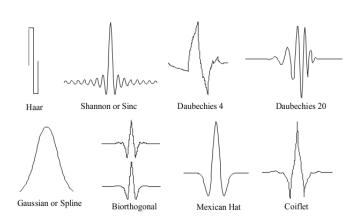
$$\mathbf{\kappa} *_{G} \mathbf{X} = \mathbf{U} \underbrace{\operatorname{diag}(\theta_{\lambda})}_{\text{Fourier Basis}} \mathbf{U}^{\mathsf{T}} \mathbf{X})$$

- Graph Fourier Basis
 - *U*: constant resolution & fixed pattern

- Graph Fourier Basis
 - *U*: constant resolution & fixed pattern
- Wavelet Basis
 - $\Psi_{s,a}(x) = \frac{1}{s} \Psi\left(\frac{x-a}{s}\right)$, s: scale, a: location



Multiple resolutions & Scaled receptive fields

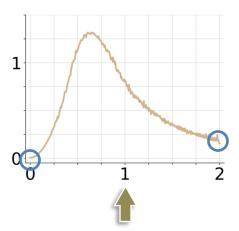


Adaptive patterns & Learnable

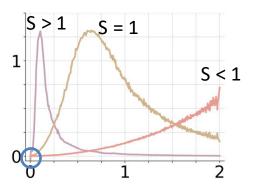
$$\kappa * X = F^{-1}(F(\kappa) \cdot F(X))$$

Graph Wavelet Bases^[1]

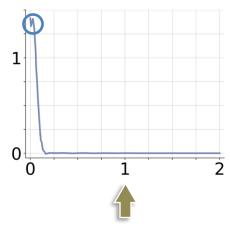
Unit wavelet $\Psi = Ug(\lambda)U^{\mathsf{T}}$



Multiple scales $g(s\lambda)$



Scaling function $\Phi = Uh(\lambda)U^{\mathsf{T}}$



Supplement direct current signals

Wavelet Admissibility Criteria^[2]

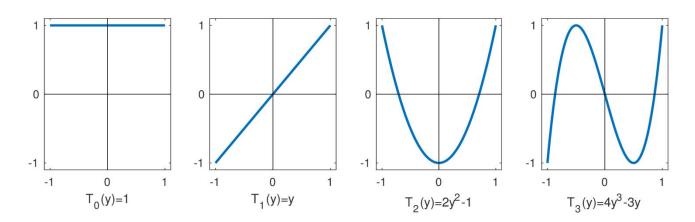
$$\mathcal{C}_{\Psi} = \int_{-\infty}^{\infty} rac{|g(\lambda)|^2}{|\lambda|} d\lambda < \infty.$$
 , $g(\lambda = 0) = 0$ and $\lim_{\lambda o \infty} g(\lambda) = 0$

How to design graph wavelets ...

- Design of Graph Wavelet Bases Chebyshev expansion^[1]
 - Approximate any function using polynomials

$$T_k(y) = egin{cases} 1 & k = 0 \ y & k = 1 \ 2yT_{k-1}(y) - T_{k-2}(y) & k > 1 \end{cases} \qquad egin{cases} f(y) = rac{1}{2}c_0 + \sum_{k=1}^{\infty} c_k T_k(y) \end{cases}$$

Waveform



Chebyshev Decomposition

Separately introduce odd terms and even terms from Chebyshev polynomials into the approximation of scaling function and wavelet.

Chebyshev Decomposition

Separately introduce odd terms and even terms from Chebyshev polynomials into the approximation of scaling function and wavelet.

$$T_k(y) \to 1/2 \cdot (-T_k(y-1)+1)$$

$$T_k(y) \to 1/2 \cdot (-T_k(y)+1)$$

$$T_k(y) \to 1/2 \cdot (-T_k($$

Scaling Function

$$h(oldsymbol{\Lambda}) = \sum_i^{
ho} oldsymbol{b_i} T_i^o(oldsymbol{\Lambda})$$

Wavelet

$$g(oldsymbol{\Lambda}) = \sum_{i}^{P} a_{i} \Gamma_{i}^{e}(oldsymbol{\Lambda})$$

Scales

$$ilde{m{s}} = \sigma(ext{Mean}(m{W_s}\hat{m{Z}} + m{b_s})) \cdot \overline{m{s}}$$

Chebyshev Decomposition

Original

Separately introduce odd terms and even terms from Chebyshev polynomials into the approximation of scaling function and wavelet.

After transform

- Theoretically correct
- Easily available
- Arbitrarily complex
- Adaptively learnable
- Multiple ranges

. .

- \triangleright Vector-valued Kernel, diag(θ_{λ})
 - Scale global frequency patterns, e.g., low and high frequencies
 - Not suitable for wavelet signals → localized, node-specific patterns

^[2] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

^[3] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895.

- \triangleright Vector-valued Kernel, diag(θ_{λ})
 - Scale global frequency patterns, e.g., low and high frequencies
 - Not suitable for wavelet signals → localized, node-specific patterns
- ➤ Matrix-valued Kernel, FNO^[3]

$$\boldsymbol{H}^{(l+1)} = \mathcal{F}^{-1}(R_{\theta} \cdot \mathcal{F}(\boldsymbol{H}^{(l)})) R_{\theta} \in \mathbb{R}^{N \times d \times d}$$

- No constraints, More parameters
- Over-fitting → weight sharing

$$\mathbb{M} *_{\mathcal{G}} \mathbf{X} = \mathcal{F}^{-1} \mathbb{M} \circ \mathcal{F}(\mathbf{X})$$
$$= \mathcal{F}^{-1}(\mathrm{MLP}(\mathcal{F}(\mathbf{X})))$$
$$R_{\theta} \colon N \times d \times d \to d \times d$$

^[1] Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS, 29.

^[2] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

^[3] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895.

Integrate two factors ■

Wavelet based Graph Convolution -- WaveGC

$$\boldsymbol{H}^{(l+1)} = \sigma\left(\left[\Phi\mathbb{S}\circ\Phi\boldsymbol{H}^{(l)}||\Psi_{s_1}\mathbb{W}_1\circ\Psi_{s_1}\boldsymbol{H}^{(l)}||\dots||\Psi_{s_J}\mathbb{W}_J\circ\Psi_{s_J}\boldsymbol{H}^{(l)}\right]\cdot\boldsymbol{W}\right)$$

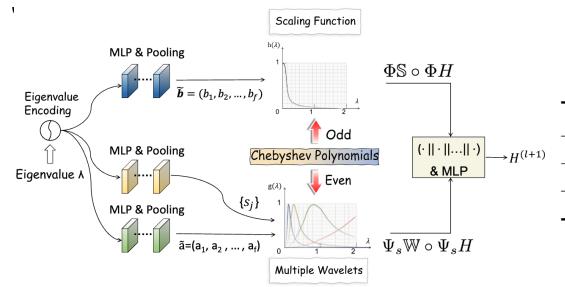
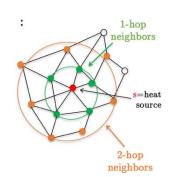


Table 1: Comparison between classical graph convolution and WaveGC.

	Classical Graph Convolution	WaveGC
Formula	$\sigma(U \mathrm{diag}(heta_{\lambda}) U^{ op} H \cdot W)$	$\sigma\left(\left[\Phi\mathbb{S}\circ\Phi H\left \left \left.\Psi_{s}\mathbb{W}\circ\Psi_{s}H ight]\cdot W ight) ight.$
Kernel	$\operatorname{diag}(\theta_{\lambda})$ (Vector)	S/W (Matrix)
Bases	U^{\top} (Fourier basis)	Φ / Ψ_s (Scaling / Wavelet basis)

™ Theorem – diverse receptive fields, scale s

ightharpoonup Compare $\sigma(\Psi_S HW)$ vs. $\sigma(\sum_{j=0}^K \tau_j A^j HW)$, $\tau_j \in [0,1]$



Theorem 4.2 (Short-range and long-range receptive fields). Given a large even number K > 0 and two random nodes a and b, if the depths m_{Ψ} and m_A are necessary for $\sigma(\Psi_s HW)$ and $\sigma(\sum_{j=0}^K \tau_j A^j HW)$ to induce the same amount of mixing $\min_{y_G}(b,a)$, then the lower bounds of m_{Ψ} and m_A , i.e. $L_{m_{\Psi}}$ and L_{m_A} , approximately satisfy the following relation when scale $s \to 0$:

$$L_{m_{\Psi}} \approx \frac{P}{K} L_{m_A} + \frac{2|E|}{K\sqrt{d_a d_b}} \frac{\text{mix}_{y_G}(b, a)}{\gamma} \underbrace{\frac{1}{(\alpha^2 s^{2K})^{m_{\Psi}}}}.$$
 (12)

Or, if $s \to \infty$ *, the relation becomes:*

$$L_{m_{\Psi}} \approx \frac{P}{K} L_{m_A} - \frac{2|E|}{K(K+1)^{2m_A} \tau_P^{2m_A} \sqrt{d_a d_b}} \frac{\text{mix}_{y_G}(b, a)}{\gamma}$$
(13)

where P < K and $(\tau_P A^P)_{ba} = \max\{(\tau_m A^m)_{ba}\}_{m=0}^K$. d_a and d_b are degrees of two nodes, and $\alpha = \frac{C \cdot 2^K (K+1)}{K!}$. $\gamma = \sqrt{\frac{d_{max}}{d_{min}}}$, where d_{max}/d_{min} is the maximum / minimum degree in the graph.

Numerical Results

Table 2. Qualified results on short-range tasks compared to baselines. **Bold**: Best, <u>Underline</u>: Runner-up, OOM: Out-of-memory. All results are reproduced based on source codes.

Model	CS	Photo	Computer	CoraFull	ogbn-arxiv
	Accuracy ↑				
GCN	92.92±0.12	92.70±0.20	89.65±0.52	61.76±0.14	71.74±0.29
GAT	93.61±0.14	93.87±0.11	90.78±0.13	64.47±0.18	71.82±0.23
APPNP	94.49±0.07	94.32±0.14	90.18±0.17	65.16±0.28	71.90±0.25
Scattering	94.77±0.33	92.10±0.61	85.68±0.71	57.65±0.84	66.23±0.19
Scattering GCN	95.18±0.30	93.07±0.42	88.83±0.44	61.14±1.13	71.18±0.76
SGWT	94.81±0.23	92.45±0.62	85.19±0.59	55.04±1.12	69.08±0.30
GWNN	90.75±0.59	94.45±0.45	90.75±0.59	64.19±0.79	71.13±0.47
UFGConvS	95.33±0.27	93.98±0.59	88.68±0.39	61.25±0.93	70.04±0.22
UFGConvR	95.46±0.33	94.34±0.34	89.29±0.46	62.43±0.80	71.97±0.12
WaveShrink-ChebNet	94.90±0.30	93.54±0.90	88.20±0.65	58.98±0.69	OOM
DEFT	95.04±0.32	94.35±0.44	91.63±0.52	68.01±0.86	72.01±0.20
WaveNet	94.91±0.29	94.09±0.63	92.06±0.33	57.65±1.05	71.37±0.14
SEA-GWNN	95.11±0.37	94.35±0.50	89.88±0.64	66.74±0.79	72.64±0.21
WaveGC (ours)	95.89±0.34	95.37±0.44	92.26±0.18	69.14±0.78	73.01±0.18

Numerical Results

Table 3. Qualified results on long-range tasks compared to baselines. **Bold**: Best, <u>Underline</u>: Runner-up, OOM: Out-of-memory, All results are reproduced based on source codes.

Model	VOC	PCQM	COCO	Pf	Ps
	F1 score ↑	MRR ↑	F1 score ↑	———AP↑	MAE ↓
GCN	12.68±0.60	32.34±0.06	08.41±0.10	59.30±0.23	34.96±0.13
GINE	12.65±0.76	31.80±0.27	13.39±0.44	54.98±0.79	35.47±0.45
GatedGCN	28.73±2.19	32.18±0.11	26.41±0.45	58.64±0.77	34.20±0.13
Scattering	16.58±0.49	33.90±0.27	16.44±0.79	56.80±0.38	26.77±0.11
Scattering GCN	30.45±0.36	33.73±0.45	30.27±0.60	62.87±0.64	26.43±0.20
SGWT	31.22±0.56	34.04±0.05	32.97±0.53	60.23±0.27	25.39±0.21
GWNN	25.60±0.56	32.72±0.08	13.39±0.44	65.47±0.48	27.34±0.04
UFGConvS	31.27±0.39	33.94±0.24	23.15±0.55	65.83±0.75	27.08±0.58
UFGConvR	31.08±0.33	34.08±0.20	26.02±0.48	65.29±0.82	27.50±0.21
WaveShrink-ChebNet	18.80±0.85	32.56±0.11	11.12±0.46	61.12±0.53	27.45±0.06
DEFT	35.98±0.20	34.25±0.06	30.14±0.49	66.95±0.63	25.06±0.13
WaveNet	28.60±0.15	33.19±0.20	23.06±0.18	64.63±0.27	25.88±0.01
SEA-GWNN	31.97±0.55	29.89±0.26	24.33±0.23	68.75±0.20	25.64±0.31
WaveGC (ours)	41.63±0.19	34.50±0.02	35.96±0.22	69.73±0.43	24.83±0.11

□ Effectiveness of Wavelet Basis

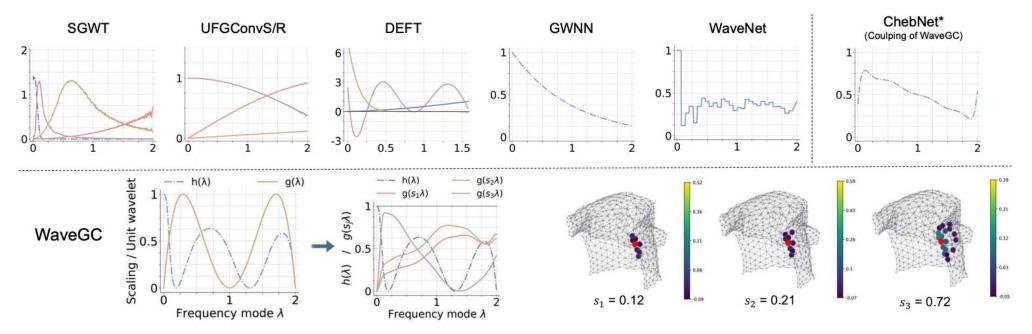


Figure 2. The spectral and spatial visualization of different bases on PascalVOC-SP.

™ IMPACT OF THE LEARNED SCALES

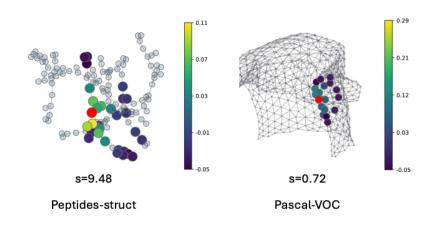


Figure 6. Visualizations of receptive fields for Peptides-struct (Ps) and Pascal-VOC (VOC) at their largest scale s.

Table 10. Comparison of average and max receptive fields of Ps and VOC.

	Peptides-struct	Pascal-VOC
Avg. Receptive Field	3.02	0.74
Max Receptive Field	9	3
Avg. Shortest Path	20.89	10.74

IMPACT OF THE LEARNED SCALES

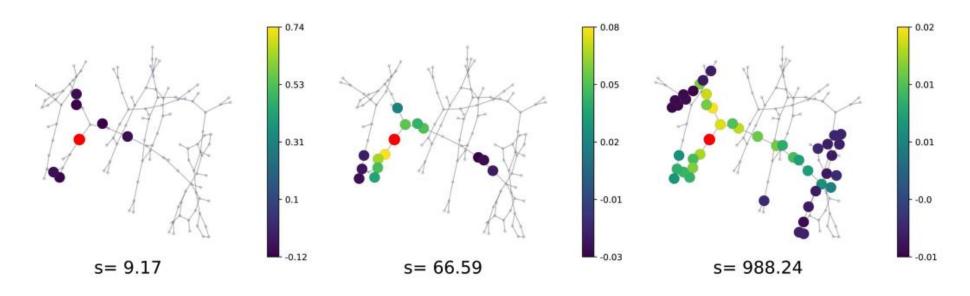


Figure 7. Visualizations of receptive fields for Peptides-func (Pf) at extreme scales.

Thanks for Listening!