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Background Wavelet-based Graph Convolution Experiments

Convolution Theorem

Inverse 

Transform

Classical Graph Convolution

𝜿 ∗ 𝑿 = 𝐹−1(𝐹 𝜿 ⋅ 𝐹(𝑿))

Kernel

Transform

𝜿 ∗𝐺 𝑿 = 𝑼 (𝑑𝑖𝑎𝑔(𝜃𝜆) ⋅ 𝑼⊤𝑿)

Fourier Basis

Vector-valued Kernel

How to further advance …
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Improve the Basis

➢ Graph Fourier Basis

• 𝑼 : constant resolution & fixed pattern
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Improve the Basis

➢ Graph Fourier Basis

• 𝑼 : constant resolution & fixed pattern

➢ Wavelet Basis

• Ψ𝑠,𝑎 𝑥 =
1

𝑠
Ψ

𝑥−𝑎

𝑠
, s: scale, a: location

Multiple resolutions & Scaled receptive fields Adaptive patterns & Learnable
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Improve the Basis

➢ Graph Wavelet Bases[1]

Unit wavelet Ψ = 𝑈𝑔 𝜆 𝑈⊤ Multiple scales g(𝑠𝜆) Scaling function Φ = 𝑈ℎ 𝜆 𝑈⊤

Wavelet Admissibility Criteria[2]

S = 1S > 1

S < 1

Supplement direct current signals

[1] Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.
[2] Mallat, S. (1999). A wavelet tour of signal processing.

How to design graph wavelets …



➢ Design of Graph Wavelet Bases – Chebyshev expansion[1]

• Approximate any function using polynomials

• Waveform
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Improve the Basis

[1] Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.
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Improve the Basis

➢ Chebyshev Decomposition

Separately introduce odd terms and even terms from Chebyshev

polynomials into the approximation of scaling function and wavelet.
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Improve the Basis

➢ Chebyshev Decomposition

Separately introduce odd terms and even terms from Chebyshev

polynomials into the approximation of scaling function and wavelet.

• Wavelet

• Scaling Function

• Scales
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Improve the Basis

➢ Chebyshev Decomposition

• Theoretically correct

• Easily available

• Arbitrarily complex

• Adaptively learnable

• Multiple ranges

…

Separately introduce odd terms and even terms from Chebyshev

polynomials into the approximation of scaling function and wavelet.
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Improve the Kernel

➢ Vector-valued Kernel, diag(𝜃𝜆)

• Scale global frequency patterns, e.g., low and high frequencies

• Not suitable for wavelet signals → localized, node-specific patterns 

[1] Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS, 29.

[2] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

[3] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for parametric partial differential 

equations. arXiv preprint arXiv:2010.08895.
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Improve the Kernel

➢ Vector-valued Kernel, diag(𝜃𝜆)

• Scale global frequency patterns, e.g., low and high frequencies

• Not suitable for wavelet signals → localized, node-specific patterns

➢  Matrix-valued Kernel, FNO[3]

,

• No constraints, More parameters

• Over-fitting → weight sharing

𝑅𝜃:  𝑁 × 𝑑 × 𝑑 → 𝑑 × 𝑑

[1] Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS, 29.

[2] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

[3] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for parametric partial differential 

equations. arXiv preprint arXiv:2010.08895.
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Integrate two factors

➢ Wavelet based Graph Convolution -- WaveGC



Background Wavelet-based Graph Convolution Experiments

Theorem – diverse receptive fields, scale s 

➢ Compare 𝜎 Ψ𝑠𝐻𝑊 vs. 𝜎 σ𝑗=0
𝐾 𝜏𝑗𝐴𝑗𝐻𝑊 , 𝜏𝑗 ∈ [0,1]
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Numerical Results
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Effectiveness of Wavelet Basis 
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IMPACT OF THE LEARNED SCALES
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IMPACT OF THE LEARNED SCALES



Thanks for Listening!
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