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Motivation

• Aligning Language Model with Human Values
• Essential for safe and effective AI interaction.
• Traditional models struggle with complex human preferences.

• Limitations of Existing Method
• Bradley-Terry (BT) Reward Model: 

• Assumes transitive (and additive) preferences.
• Cannot handle intransitive (cyclic) preferences.

4



Reward Modeling & Preference Modeling

• Using an dataset of completions, we collect pairwise feedback from 
humans:
• 𝑥 → 𝑦, 𝑦! ∼ 𝜇(𝑥), where 𝑥 represents instructions and 𝑦, 𝑦′ are responses.
• ⇒ 𝑦", 𝑦# ∼ 𝑃(𝑦" ≻ 𝑦#)
• y win:                y lose:          (human preferences)

• , where 𝑦! is the winning response and 𝑦" is the losing response, as 
determined on human preferences. 
• An important special case is when human preferences are actually 

following a Bradley-Terry (BT) reward model: 𝐵𝑇 𝑦!, 𝑦" 𝑥) =
𝑃 𝑦 ≻ 𝑦# = 𝜎(𝑟 𝑦! 𝑥 − 𝑟 𝑦" 𝑥))
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Limitations of Bradley-Terry Reward Model

• BT models cannot model non-transitivity (Gardner, 1970) or non-
additivity (Bertrand et al 2023).
• Rock-paper-scissors game
• In BT model, it will give
• Reward(Rock) = Reward(Scissor) = Reward(Paper)
• Such that

• P(y > y’) = 0.5
• This is not correct!
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Challenges in Preference Modeling

• Intransitive Preferences in Real World
• Human preferences are not always transitive, and can be cyclic (intransitive) 

e.g., A preferred over B, B over C, but C over A.
• Traditional models such as BT assume transitivity, which fails to capture such 

preferences.

• Computational Efficiency
• Pairwise comparisons (PairPM / PairRM) becomes computationally expensive 

with 𝑂(𝐾$) complexity for 𝐾 responses.
Need for models that are both expressive and computationally efficient.
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Challenges in Preference Modeling

• Is there a principled way to model general preference?
• Can we perform general preference modeling that are both 

expressive and computationally efficient?

We answer this question affirmatively by proposing
Preference Representation Learning.
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General Preference Modeling With Preference 
Representations
• Preference Representation Learning

• Embeds (contextual) responses into a latent space.
• Our General Preference representation Model (GPM) can capture complex 

and intransitive preference structures.
• Achieves linear computational complexity 𝑂(𝐾) when comparing K responses.

• General Preference Optimization (GPO)
• Utilizes preference scores calculated using preference representations 

(embeddings) instead of scalar rewards.
• Generalizes reward-based reinforcement learning from human feedback.

Zhang et al., General Preference Modeling with Preference Representations for Aligning 
Language Models (arxiv.org/abs/2410.02197)
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Background & Notations
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Reward-based Reinforcement Learning from Human 
Feedback (RLHF)
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General Preference Modeling
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Supervised Pair Preference Models (PairPM & PairRM)
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General Preference Modeling with Preference 
Representations

• Goal: Develop a model that captures complex human preferences efficiently
• Key Idea: Represent responses with preference representations (embeddings) 

and model preferences through their interactions.
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Preference Representations

• Preference Representations: Each response is embedded as a vector 
in a latent space, and the preferences are modeled through 
interactions between these representations (embeddings) using a 
skew-symmetric operator.

• Embedding captures latent features relevant to preferences.
• Enables modeling preferences beyond scalar rewards (BT model).
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Preference Representations

• Skew-Symmetric Preference Operator
• Captures the anti-symmetric nature of preferences.
• Ensures that 𝑠 𝑦% ≻ 𝑦& = −𝑠 𝑦& ≻ 𝑦% .
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Preference Score Function 
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Preference Score Generalizes Beyond BT Reward 

• We could find that BT reward model is a special case of our general 
preference model.
• When embeddings are scalar rewards [r(y|x), c], we recover the BT reward.



• 𝑃 𝑦! > 𝑦" = 𝜎 𝑣!$𝑅$𝑣"/𝜏 , where
example case when 𝑘 = 1:
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Example Case



GPM can handle transitive and (intransitive) cyclic tasks

Preference embedding for Rock-Paper-Scissor Game:

A > B > C > A > B > C > A > B > C

Preference embedding for Transitive Game:

3 > 2 > 1
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Experiments on synthetic data

Experiments on synthetic data:

A > B > C > D

Perfectly fitted.
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Expressiveness of the Model
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Canonical form of the Preference Operator

• Canonical form of the skew-symmetric (anti-symmetric) preference 
operator.
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Complex Representation Interpretation
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Implementing GPM
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Implementing GPM
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Implementing GPM as MoE



More on Generative Reward Model (GenRM) & PairRM
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Zhang et al., Generative Verifiers: Reward Modeling as 
Next-Token Prediction. arxiv.org/abs/2408.15240

Zhang et al., Autonomous Data Selection with Language 
Models for Mathematical Texts. arxiv.org/abs/2402.07625



More on Generative Reward Model (GenRM) & PairRM
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Mahan et al., Generative Reward Models. arxiv.org/abs/2410.12832
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Background on Preference-based RLHF

Seek a policy that performs well against any opponent in terms of preference 
probabilities.
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The von Neumann winner

• Represents an optimal mixed strategy. 
• Guarantees a performance at least equal to any opponent.
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Efficient Preference Optimization with General 
Preference

• Computation Advantage of GPM:
• Traditional Pairwise models: 𝑂(𝐾$) complexity.
• GPM computes embeddings once: 𝑂(𝐾) complexity.

• Firstly, we compute 𝑣! for each response 𝑦!.
• Then, we calculate preference scores using: 𝑠 𝑦! ≻ 𝑦" = ⟨𝑅≻𝑣! , 𝑣"⟩ .

• Result:
• Efficiently obtain all pairwise preference scores.
• Suitable for applications requiring scalability.
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Policy Optimization with General Preference

Generalize reward-based RLHF with PPO seamlessly. 
(Ouyang et al. Training language models to follow instructions with human feedback) 



36

General Preference Optimization with Policy Gradients
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General Preference Optimization with Policy Gradients
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Summary & Takeaways

• General Preference Representation Learning (GPM):
• We introduced a novel framework for modeling general preferences.
• Bridged the gap between expressiveness and efficiency.
• Showed that GPM outperforms traditional reward models such as BT model.

• General Preference Optimization (GPO):
• We generalized reward-based RLHF to preference scores based RLHF 

seamlessly.
• We proposed a new (iterative & self-play) preference optimization method 

GPO using preference scores.
• Demonstrated its effectiveness in aligning language models.
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Thank you for your attention!
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