Beyond Bradley-Terry Models: A
General Preference Model for
Language Model Alignment

Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quangquan Gu
l1IS, Tsinghua University & UCLA




+

Outline °

Introduction to RLHF & Reward Modeling
General Preference Modeling

General Preference Optimization

Concluding Remarks

Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quanquan Gu

IS, Tsinghua University & UCLA



+

Outline °

Introduction to RLHF & Reward Modeling
General Preference Modeling

General Preference Optimization

Concluding Remarks

Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quanquan Gu

IS, Tsinghua University & UCLA



Motivation

 Aligning Language Model with Human Values
* Essential for safe and effective Al interaction.
* Traditional models struggle with complex human preferences.

* Limitations of Existing Method N r
* Bradley-Terry (BT) Reward Model: @

* Assumes transitive (and additive) preferences.

e Cannot handle intransitive (cyclic) preferences. @ o @



T ——
Reward Modeling & Preference Modeling

* Using an dataset of completions, we collect pairwise feedback from
humans:
« x > v,y ~ u(x), where x represents instructions and y, y' are responses.
* =Y Y1~ Pw > y1)
* ywin: |} y lose: I’ (human preferences)

* , where y,, is the winning response and vy, is the losing response, as
determined on human preferences.

* An important special case is when human preferences are actually
following a Bradley-Terry (BT) reward model: BT (y,,,, y;|x) =

P(y>y')=0cOwlx) —rlnlx))



Limitations of Bradley-Terry Reward Model

* BT models cannot model non-transitivity (Gardner, 1970) or non-
additivity (Bertrand et al 2023).
* Rock-paper-scissors game
* In BT model, it will give

* Reward(Rock) = Reward(Scissor) = Reward(Paper) @ > @
* Such that P

* P(ly>y’)=0.5

* This is not correct!



Challenges in Preference Modeling

* Intransitive Preferences in Real World

 Human preferences are not always transitive, and can be cyclic (intransitive)
e.g., A preferred over B, B over C, but C over A.

* Traditional models such as BT assume transitivity, which fails to capture such
preferences.
* Computational Efficiency

 Pairwise comparisons (PairPM / PairRM) becomes computationally expensive
with O (K?) complexity for K responses.

Need for models that are both expressive and computationally efficient.

(a) Bradley-Terry (BT) reward model



Challenges in Preference Modeling

* Is there a principled way to model general preference?

* Can we perform general preference modeling that are both
expressive and computationally efficient?

We answer this question affirmatively by proposing
Preference Representation Learning.



General Preference Modeling With Preference
Representations

* Preference Representation Learning
 Embeds (contextual) responses into a latent space.

* Our General Preference representation Model (GPM) can capture complex
and intransitive preference structures.

* Achieves linear computational complexity O(K) when comparing K responses.

* General Preference Optimization (GPO)

» Utilizes preference scores calculated using preference representations
(embeddings) instead of scalar rewards.

* Generalizes reward-based reinforcement learning from human feedback.

Zhang et al., General Preference Modeling with Preference Representations for Aligning

Language Models (arxiv.org/abs/2410.02197)
9
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Background & Notations

In this section, we present preliminaries on reward modeling, preference modeling, and reinforcement
learning from human feedback (RLHF) for language model alignment. We consider an autoregressive
language model that generates responses to the given prompts. Let x = [x1, Z2, . ..] denote a prompt,
a sequence of tokens. The language model 7 generates a response y = [y1,¥2,...,yn] based on
the conditional probability distribution: 7(y | x) = Hf\;l 7 (¥; | X,¥<i), where y; represents the
sequence of tokens generated before position 7. In this paper, we assume a general-preference oracle.
Given two responses y and y’ to the same prompt x, the oracle provides the feedback indicating
which response is preferred.

Ply>-y |x)=Ef[o(y >y |x)].

11



Reward-based Reinforcement Learning from Human
Feedback (RLHF)

The most prevalent approach to aligning language models with human preferences is to consider
a scalar reward function r(y;x) that assigns a numerical score to each response. The preference
between two responses is then determined solely by the reward scores for the two responses. For
example, the Bradley-Terry (BT) model (Bradley & Terry, 1952) is a widely used method for
modeling pairwise preferences in this context. However, the BT model can not capture intransitive
(e.g. cyclic) preferences effectively (Bertrand et al., 2023). Under the BT model, the probability
that response y is preferred over y’ is given by:

P(y = y' | x) = o(r(y;x) — r(y';x)),

where o(z) = 1/(1 + e™#) is the logistic (sigmoid) function.

In practice, the reward function r(y; x) is learned by maximizing the likelihood of the observed
preference data. Once the reward function is established, policy optimization techniques, such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017), can be applied to adjust the language
model to generate responses that maximize expected rewards. The optimization problem can be
formulated as:

max Exwx, yomy( ) [1(¥3 %)) = BBx~a [KL (mg (- | ) || mree(- [ x))] (3.1)

where 6 are the parameters of the policy g, m.s is a reference policy (often the pre-trained or
supervised-fine-tuned language model), § is a scaling parameter that controls the strength of
regularization, and KL denotes the Kullback-Leibler divergence. 12



General Preference Modeling

We consider the scenario where given a prompt x, a set of responses {y;} is generated, and human
preferences over these responses are represented as pairwise probabilities P(y; > y; | x) € (0,1),
indicating the likelihood that response y; is preferred over y; given the prompt x.

To model these preferences, we define a (pairwise) preference score function:

: (3-2)

which represents the log-odds of y; being preferred over y;. This score function allows us to express
the preference probability as:

P(yi = yj | x) = o (s(yi = y; [ %)), (3-3)

where o(z) = 1/(1 + e~ ?) is the logistic function. One can see that the BT model is a special case:
s(yi = yj | ) = r(yi;x) — r(y;; x).

13



Supervised Pair Preference Models (PairPM & PairRM)

Existing approaches often involve concatenating the prompt and responses with a template and
training an LLM-based sequential classifier in a supervised learning manner. For example, Jiang
et al. (2023) simply concatenate the three segments (x,y1,y2) sequentially and form a single input
sequence with special tokens as separators:

‘<s> <source> x </s> <candidatel> yl1 </s> <candidate2> y2 </s>’

Then a sequential classification head on the last token is trained to predict the preference.
Another example is Munos et al. (2023), which uses the following template for text summarization:

‘You are an expert summary rater. Given a piece of text and two of
its possible summaries, output 1 or 2 to indicate which summary

is better.

Text - (text), Summary 1 - (summaryl), Summary 2 - (summary2).
Preferred Summary -’

Then use the last logit for an arbitrarily chosen token as s(y; > y2|x) for training.
However, due to the language model’s position encoding (Press et al., 2021; Su et al., 2024) and
the causal attention (Radford et al., 2018, 2019) mechanism not being symmetric, the candidate’s
order in the concatenation will affect the final prediction results. It is mitigated by randomly
shuffling the two responses in the training dataset but the output is still highly asymmetric. Another
limitation is that how to represent the preference score can be highly ad-hoc. The two examples above
already use different templates and different linear heads (sequential classification v.s. language
modeling). 14




General Preference Modeling with Preference
Representations

* Goal: Develop a model that captures complex human preferences efficiently

* Key Idea: Represent responses with preference representations (embeddings)
and model preferences through their interactions.

(a) Bradley-Terry (BT) reward model

(c) General Preference representation model (GPM)

Figure 2: Illustration of (a) Bradley Terry (BT) reward model, (b) supervised pair preference model
(PairPM) _(Jiang et al., 2023; Dong et al., 2024), and (c) our General Preference representation
model (GPM).

15




Preference Representations

* Preference Representations: Each response is embedded as a vector
in a latent space, and the preferences are modeled through
interactions between these representations (embeddings) using a
skew-symmetric operator.

Definition 4.1 (Preference Representations). Given a prompt x, we assign to each response y a
preference representation vector vy x € R?%. These representations are designed to capture the
features relevant to human preferences beyond what can be represented by scalar rewards.

 Embedding captures latent features relevant to preferences.
* Enables modeling preferences beyond scalar rewards (BT model).

16



Preference Representations

* Skew-Symmetric Preference Operator
e Captures the anti-symmetric nature of preferences.

* Ensures that S(yi > yj) = —S(yj > yl-).

Definition 4.2 (Skew-symmetric Preference Operator). To capture the directional nature of prefer-
ences, we define a skew-symmetric (anti-symmetric) preference operator R~ € R?%*2k_ Specifically,
R™ is a block-diagonal matrix consisting of k skew-symmetric blocks of the form (for more discussion,
please see Appendix A):

0 -1
R,_[l 0], A (4.1)
An example of R~ for k = 2 is:
0O -1 0 O
1 0 0 O
- _
R = 0O 0 0 -1
0O 0 1 O

17



Preference Score Function

Definition 4.3 (Preference Score). The preference score between two responses y; and y; using
preference representations is defined as:

s(yi = yj | %)= <R>Vyz'|x’vyy'|x>’ (4.2)

where (-, -) denotes the inner product in R2*. This score captures the anti-symmetric relationship
between responses induced by human preferences.

We model the preference probability using the logistic function as defined in Equation (3.3).
Our general preference representation model (GPM) exhibits two desirable properties:
1. Skew-symmetry. The preference score function is skew-symmetric, satisfying:

s(yi > y; | x) = —s(y; = yi | x).
This reflects the fact that the preference relation is naturally skew-symmetric: if y; is preferred
over y; with probability p; j, then y; is preferred over y; with probability 1 — p; ;.
Specifically,
sy =y |x) = <R>vy|x,vy|x> =0.
This means that a response is neither superior nor inferior to itself.

2. Magnitude preserving. The skew-symmetric preference operator does not change the repre-
sentation vector’s magnitude, which makes this operation stable for training and inference.

<R>Vy|x’ R>VyIX> = <Vy|x’ Vle)' 18



Preference Score Generalizes Beyond BT Reward

Relation to Bradley-Terry Model. If we set k = 1, vy, = [r(y | x),c]", where c is a constant

and ¢ #0 (e.g.,,c=1),and R™ = [O

1 _01] , then the preference score reduces to:

s(yi = y; | %) = c(r(yi [ x) —r(y; | %)),

and the preference probability becomes:

Ply: > y; | x) = a[c(r(yi | x) —r(y; | x))],
* We could find that BT reward model is a special case of our general

preference model.
 When embeddings are scalar rewards [r(y|x), c], we recover the BT reward.

19



Example Case
* P(yw > y1) = o(myR v /7), where
example case when k = 1:

1
Then S’(’yz' ~ y]) = <R>v,-,vj> = ’01(1)'02(2) — ’01(2)’02(1) .

0 -1
o Wehave v; €S?, ||vi]la =1, R = ! 0 ] , where v; = (vi(1),v;(2))" .

P(y; = y;) = o(s' (i = v;)).

We have the following training objective:

Lep = Egyyyoion [—logo(s'(y1 > y2)/7)], one canletT = 0.1.

20



GPM can handle transitive and (intransitive) cyclic tasks

Vector Positions on Unit Circle Vector Positions on Unit Circle

1.00 1.00 4

01 075

086, 5

0.25 1 0.25

0.00 0.00

0251 025

-0.50 4 -0.50 b/

e 075

100 100

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100 -1.00 -0.75 -0.50 -0.25 000 025 050 075 100

Preference embedding for Transitive Game: Preference embedding for Rock-Paper-Scissor Game:
3>2>1 A>B>C>A>B>C>A>B>C

21



Experiments on synthetic data

Experiments on synthetic data:

A>B>C>D

Perfectly fitted.
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Expressiveness of the Model

Theorem 4.4 (Expressiveness of Preference Representation Model). Let P € R¥** be a real skew-
symmetric matrix (i.e., P = —PT). Then there exist vectors {v;}*_, C R?* and a block-diagonal

skew-symmetric matrix R~ € R2¥*2k with R> consisting of k blocks of the form:

R, = !‘1) _(1)], I=1,... k

such that:
Pij = V;I-R>-Vj, VZ,]

Moreover, the vectors {v;} can be constructed explicitly from P.

Theorem 4.4 suggests that our preference representation framework can theoretically model arbitrary
complex and potentially intransitive (e.g., cyclic) preference structures (see Appendix A.4 for proofs).

23



Canonical form of the Preference Operator

Proposition A.1. For any two vectors v; € R?* and v € R%* if R € R?**2F gatisfies the following
two properties:

1. Skew-symmetry: (Rv;,v;) = —(Rv;, v;).

2. Magnitude preserving: (Rv;, Rv;) = (v;, v;).

Then R must be in the form R = UJU', where U € R?**2* is an orthonormal matrix (e.g.
identity matrix Iox) and J is a block-diagonal matrix consisting of k skew-symmetric blocks of the

form:
0 -1

e Canonical form of the skew-symmetric (anti-symmetric) preference
operator.

24



Complex Representation Interpretation

Our model can also be interpreted using complex representations. By representing the representations
as complex vectors vy € CF, we can express the preference score as:

s(yi = yj | x) =Im (<VYi’V}’j>) )

where Im(-) denotes the imaginary part, and (-,-) is the Hermitian inner product. This formulation
captures cyclic and intransitive preferences through the angular relationships between complex
presentations.

Theorem A.2 (Expressiveness of Complex Preference Representations). Let P € R¥*¥ be a real
skew-symmetric matrix (i.e., P = —PT). Then, there exist complex vectors {v;}¥_; C C¥ such that:

]Dij =Im((vz~,vj)), Vl,j

Example. For k =1, let vy, = %y | then:

s(yi > yj | x) =sin(y, — 0yj).

25



Implementing GPM

When the preference score matrix P has an even dimension, i.e., P € R2k*x2k

interesting interpretation based on spectral decomposition.

, we have a more

Theorem A.3 (Expressiveness of Preference Representation Model). Let P € R?#*2* be a real skew-

symmetric matrix (i.e., P = —PT). Then there exist representations (embeddings) {v;}?*, c R?
and a block-diagonal skew-symmetric matrix R~ € R%*2F with R~ consisting of k£ blocks of the
form:

0 -1
Rl_ll 0:|, l=1,...,k,

such that:
P =v/R"v;, Vi,j

Moreover, the representations {v;} can be constructed from the orthogonal matrix U in the
decomposition of P, scaled by the square roots of the positive eigenvalues of P.

26



Implementing GPM

Eigenvalue Scale Gate. The eigenvalue scale gate G, computes context-dependent scaling factors
{\i(x)}, where \;(x) > 0, based solely on the prompt x:

M)} = Gr(x).

This component models how different preference dimensions are weighted in the context of the given
prompt, effectively adjusting the importance of various aspects such as helpfulness, instruction-
following, and creativity.

Eigenvector Embedding Head. The eigenvector embedding head £y generates embeddings vy«
for each response y in the context of the prompt x:

Vylx = Ev (xa Y) .

These embeddings capture the nuanced characteristics of the responses relevant to human preferences.
Preference Score. The preference score between two responses is computed as:

s(yi =y | x) = V;,—z_lxD(x)R*D(x)vyﬂx.

where D(x) is a block-diagonal matrix with blocks 1/\;(x)I2, and R™ is the skew-symmetric operator
defined previously. We normalize the embeddings vy to have unit length to ensure stability in
training.

27



Implementing GPM as MoE

Scale
gate

T Preference Score
GPM ’ H[ representation v(y1|x) ]1 0 styLyz) | stynys)

[ instruct x | resp y2 } GPM —)[ representation v(y2|x) ]—) VPR D)vy, o[ ——D| s(y2,y1) 0 s(y2,y3)

: s(y3,y1) | s(y3,y2) 0
GPM —)[ representation v(y3|x) ]J—) vy Y

—

[ instruct x | resp yl

—
W

[ instruct x | resp y3

Automatic Subspace Discovery. The use of multiple dimensions in the embeddings allows the
model to discover different subspaces corresponding to various preference dimensions automatically.
Each pair of dimensions can capture distinct aspects of preferences, such as helpfulness, correctness,
or stylistic elements. The context-dependent eigenvalues \;(x) modulate the contributions of these
subspaces based on the prompt, enabling the model to adapt to varying user preferences dynamically.

This implementation provides a scalable and flexible way to model complex human preferences,
making it suitable for large-scale applications in language modeling and other domains where
alignment with nuanced human values is essential.

28



More on Generative Reward Model (GenRM) & PairRM

3 Language Models as Zero-shot Verifiers

exp(logit(“YES’))
exp(logit(‘YES”)) + exp(logit(‘NO”))

s A"

LM-Score(-) =

“<system>

You are ChatGPT, equipped with extensive expertise in
mathematics and coding, and skilled in complex rea-
soning and problem-solving. In the following task, I
will present a text excerpt from a website. Your role
is to evaluate whether this text exhibits mathematical
intelligence and if it is suitable for educational purposes
in mathematics. Please respond with only YES or NO
</system>

User: {
“url”; “furl}”,
“text”: “{text}”

1. Does the text exhibit elements of mathematical intel-
ligence? Respond with YES or NO

2. Is the text suitable for educational purposes for
YOURSELF in the field of mathematics? Respond with
YES or NO s

Assistant: 1.

Figure 3: Illustration of a zero-shot meta-prompt designed
for the AutoDS method.

Zhang et al., Autonomous Data Selection with Language
Models for Mathematical Texts. arxiv.org/abs/2402.07625

I x Token Probability
| “Is the answer correct (Yes/No)?” ' '/, 04 — @
Ss[No ]

"> Other tokens

Finetuned Verifier

Problem

Solution

¢ N
! “Let’s verify step by step” | Average

Finetuned Verifier

(==~
— No |»io2]
Problem :\
N ]
091 —(r
|

Yes

[ solution 1

{
Figure 3 | An illustration of generative verifiers, namely GenRM and GenRM-CoT. Given a question and a
candidate solution, GenRM directly finetunes an LLM to answer the question s the answer correct (Yes/No)?’
via SFT on the next-token response corresponding to either ‘Yes’ or ‘No’. During inference, the verifier score is
obtained by extracting the probability of the ‘Yes’ token (4). In comparison, GenRM-CoT finetunes a LLM to
produce verification chain-of-thought (CoT) rationale before yielding the final Yes/No token. At test-time, we
sample multiple CoT rationales and use majority voting to compute the average probability of ‘Yes’, enabling
GenRM-CoT to utilize additional inference-compute for better verification.

'
Yes 08!

Zhang et al., Generative Verifiers: Reward Modeling as

Next-Token Prediction. arxiv.org/abs/2408.15240
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More on Generative Reward Model (GenRM) & PairRM

T, Y1 z,Ys T,Y1,Y2
| | |
( LLM ’ ‘ LLM W [ ’
v P ;* I
{ Linear Predictor ] I\ p(I|z,y1,y2)

T el J

— - - - - - - = =

Bradley-Terry GenRM CoT-GenRM

Figure 1: Methods overview. Bradley-Terry methods directly output the probability of y; being
preferred over yo, while GenRM compares the LLMs next-token probabilities of answer indicator
tokens (I, I3). CoT-GenRM samples reasoning traces (r) followed by the answer indicator token.

Mahan et al., Generative Reward Models. arxiv.org/abs/2410.12832
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Background on Preference-based RLHF

To address the potential intransitive human preference, the preference-based LLM alignment
algorithms (Munos et al., 2023; Azar et al., 2023; Wu et al., 2024b; Rosset et al., 2024) have been
proposed to directly work on the preference pairs instead of assuming a reward function.

Given a preference oracle P (y > y’ | x). The objective is to find a policy 7 that performs well
against another competing policy 7’ in terms of these preference probabilities. For example, Azar
et al. (2023) consider competing with another fixed policy p (X denotes the distribution over
prompts):

max Ex~ [Eymn(x), y'mu(ix) [P > ¥ | x)] — BKL(7||mes) | (5.1)
Other works (Munos et al., 2023; Wu et al., 2024b; Rosset et al., 2024) consider solving the two-player

constant-sum game:

max min Exwx [Byn( ), ynm () [P (v =¥ [ %)]] (5.2)
To simplify notation, we define the winning probability of a policy 7 over another policy 7’ as:
P (m > 7" | X) = Eyror(x), y'mr(x) [P =¥ [%)]. (5.3)
The optimization problem then becomes:
max n}rlln Ex~x [P (7> ' | x)]. (5.4)

Seek a policy that performs well against any opponent in terms of preference
probabilities. 32



The von Neumann winner

The von Neumann winner is a concept drawn from social choice theory (Sen, 1986) and has
been studied in preference-based RL (Owen, 2013; Dudik et al., 2015). It is the Nash equilibrium
of the two-player symmetric game (Equation 5.4). It represents a mixed strategy—a probability
distribution over possible responses—that performs optimally in the worst-case scenario against any
opponent.

More formally speaking, a distribution 7* is called a von Neumann winner if it satisfies:

7{;1611A1 Ex~x [P (7" =o' | x)] > 1/2.

This condition ensures that, on average, the von Neumann winner 7* is at least as likely to be
preferred than any other policy 7/. The von Neumann winner always exists due to the symmetric
nature of the two-player game (Equation 5.4).

* Represents an optimal mixed strategy.
* Guarantees a performance at least equal to any opponent.

33



Efficient Preference Optimization with General
Preference

* Computation Advantage of GPM:
* Traditional Pairwise models: O (K?) complexity.

* GPM computes embeddings once: O(K) complexity.
* Firstly, we compute v; for each response y;.

* Then, we calculate preference scores using: s(yi > yj) = (R7v;,v)) .

* Result:
* Efficiently obtain all pairwise preference scores.
 Suitable for applications requiring scalability.

34



Policy Optimization with General Preference

Policy Optimization with Preference Score. Once we have a general preference model that
outputs the preference score s(y; > y;|x) at hand, we aim to find a policy 7 that performs well
against an opponent policy u in terms of expected preference scores. The optimization problem is
formulated as:

mgx Ex [Ey~7r9(-|x), y'~ou(-|x) [s(y -y | X)]] — BEx [KL (7o (- | x)||mret(- | x))], (5.5)

where 7 is a reference policy (e.g., the initial language model), p is the opponent policy (usually
the same as mf), and B > 0 is a regularization parameter controlling the divergence from the
reference policy. We would like to point out that this formulation is different from the many previous
works (Wu et al., 2024b: Swamy et al., 2024: Rosset et al., 2024: Munos et al., 2023: Azar et al.,
2023) as they consider maximizing the win rate P(y > y’|x), while our formulation is to maximize
s(y > y'|x) =log %g:—;':t:%. Note that P(y > y’|x) only varies between 0 and 1, while s(y > y'|x),
similar to the reward r(y;x) in RLHF or DPO, can take arbitrary values. The flexibility in its value
range might benefit fine-tuning.

Generalize reward-based RLHF with PPO seamlessly.

(Ouyang et al. Training language models to follow instructions with human feedback) .



General Preference Optimization with Policy Gradients

General Preference Optimization. We consider the SPPO loss used by Wu et al. (2024b)
for iterative preference optimization, except that we use preference score instead of preference
probability in the loss form. SPPO used K responses for each prompt x and calculated the empirical
win rate of each response yj. Instead, we calculate 5 (y; > p | x) to estimate the empirical win rate
over the distribution p as below:

K
A 1 .
s(yi>-u|x):EZs(yi>-yk|x),‘v’z€[K], (5.6)
k=1

At each iteration ¢, GPO has the following learning objective:

— argmi mo(y [x)) 1. _ ’
0:11 = arg nbln ]EXNX,yNﬂ'et (-|x) ! (log (7T0t (v | x)) 3 (3 (y = 7o, | x) — log Zﬂ'ot (X))) ] , (5.7)

where the normalizing factor Zr, (x) := ), me,(y|x) exp (5 (y > 7o, | x)).
In practice, we directly replace log Zr,, (x) with 0'. Intuitively, if a response y receives a high
average score, GPO will increase its log probability. We report the empirical performance of GPO

in Section 6.3.
36



T ——
General Preference Optimization with Policy Gradients

Connection to Policy Gradient. Applying policy gradient theorem on Equation (5.5) gives:

~ o (y (%) ]
VoEx~x vera | S(y = mg,) — Blog ———=
(] X,y 2] [ (y Ot) /3 g 7r0t (y|x)

— Exyers [(@‘(y - 0,) — Blog %) Volog Wo(.Y|X)]

2
= EXNX,yN'n‘g [ - ve (§(y ~ 7‘-9,‘,) B ﬁlog %) :| .

So Equation (5.7) can also be seen as an offline policy gradient method for the optimization problem
(5.5).

Remark 5.2. Note that the general preference score given by our GPM in Equation (5.5) can also
be integrated as preference (reward) signal for any off-the-shelf RLHF and preference optimization
methods, including (iterative) DPO (Rafailov et al., 2024), IPO (Azar et al., 2023), NLHF (Munos
et al., 2023), SPPO (Wu et al., 2024b) and REBEL (Gao et al., 2024), as well as PPO-based
methods (Ouyang et al., 2022) by directly optimizing Equation (5.5).
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Summary & Takeaways

* General Preference Representation Learning (GPM):
 We introduced a novel framework for modeling general preferences.
* Bridged the gap between expressiveness and efficiency.
* Showed that GPM outperforms traditional reward models such as BT model.

* General Preference Optimization (GPO):

 We generalized reward-based RLHF to preference scores based RLHF
seamlessly.

* We proposed a new (iterative & self-play) preference optimization method
GPO using preference scores.

 Demonstrated its effectiveness in aligning language models.
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Thank you for your attention!
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