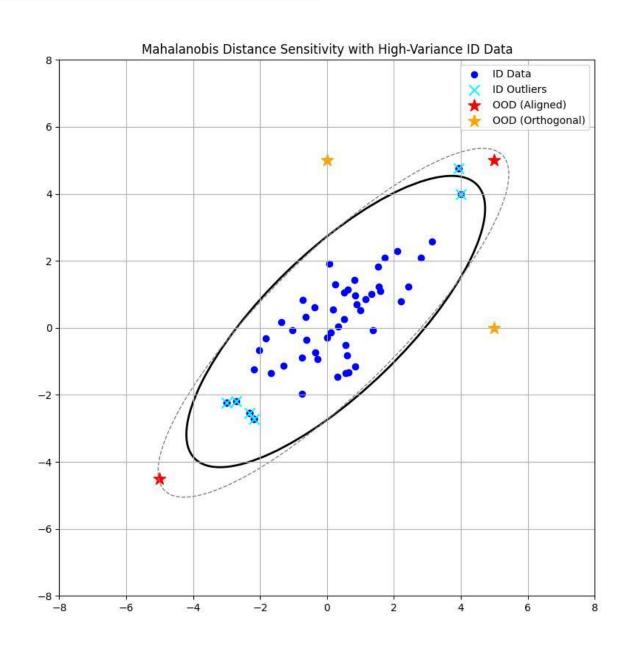


Improving Out-of-Distribution Detection via Dynamic **Covariance Calibration**

Kaiyu Guo^{1,3}, Zijian Wang¹, Tan Pan^{2,3}, Brian C. Lovell¹, Mahsa Baktashmotlagh¹ ¹University of Queensland ²Fudan University ³Shanghai Academy of Al for Science

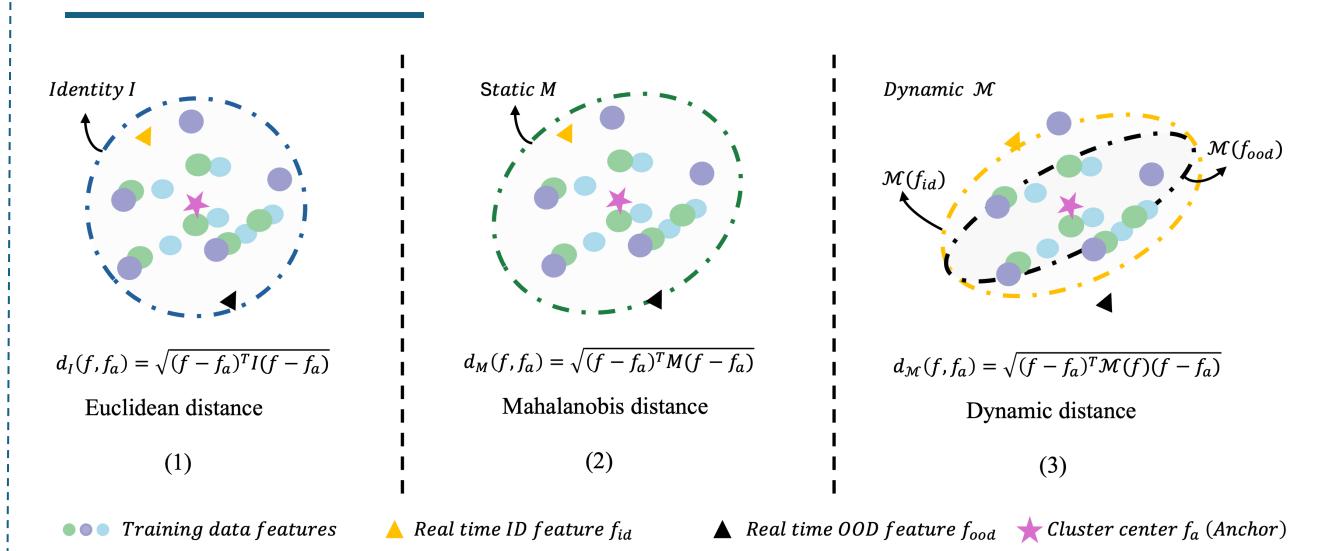
Motivation



Outlier points may affect the calculation of distance for OOD detection.

How can we reduce the effect of outlier features on the information geometry without losing important characteristics of the ID data?

Insight and Method



 $\mathcal{M}(f) = \left(Cov - f_p^{\mathsf{T}} f_p \right)^{-1},$ where f_p is the realtime feature projected to the ID residual space

Algorithm 1 OOD Score $s(\cdot)$ Calculation

Input: Feature vector f, basis matrix \mathbf{B} , within-class covariance matrix Σ_R , class means $\{\mu_i\}$

Output: Score function $s(\cdot)$

Normalize f using the normalizer $\mathbf{a} \leftarrow \texttt{torch.einsum}(i, bi \rightarrow b', f, \mathbf{B})$

 $adj \leftarrow \mathbf{B}^{\top} \mathbf{a}^{\top} \mathbf{a} \mathbf{B}$

 $dygeo \leftarrow \texttt{torch.linalg.inv}(\Sigma_R - adj)$

 $d \leftarrow f - \{\mu_i\}$

 $dists \leftarrow \texttt{torch.einsum}('bi, ij, bj \rightarrow b', d, dygeo, d)$ $score \leftarrow -torch.min(\sqrt{dists})$

return score

When $(f - f_a)^{\mathsf{T}} \mathcal{M}(f) (f - f_a)$ is larger than zero

Theorem 4.2. Given a feature $f \in \mathbf{R}^d$, a non-zero feature $a \in \mathbf{R}^d$, and a symmetric positive definite matrix $\Sigma \in$ $\mathbf{R}^{d\times d}$, we define $p=f^{\top}\Sigma^{-1}f$, $q=a^{\top}\Sigma^{-1}a$, and s= $f^{\top}\Sigma^{-1}a$. Setting $d(f)=(f-a)^{\top}(\Sigma-ff^{\top})^{-1}(f-a)$, if p < 1, then $d(f) \ge 0$; if p > 1 and $(s-1)^2 \le (p-1)(q-1)$, then $d(f) \geq 0$.

Experiments

Table 1. Comparision with different post-hoc OOD detection methods on CIFAR benchmarks. We present the AUROC and FPR95 results on DenseNet and WideResNet and the average results over 2 ID datasets. The results of CIFAR-10/CIFAR-100 are averaged over 6 OOD datasets. The detailed results can be viewed in the appendix

	DenseNet						WideResNet					
Method	CIFAR-10		CIFAR-100		Avg.		CIFAR-10		CIFAR-100		Avg.	
	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓
MSP (Hendrycks & Gimpel, 2017)	92.5	48.72	74.37	80.13	83.44	64.43	91.07	50.64	76.93	77.48	84	64.06
Energy (Liu et al., 2020)	94.65	26.2	81.17	68.44	87.91	47.32	91.86	33.74	79.83	71.95	85.85	52.85
maxLogit (Basart et al., 2022)	94.64	26.36	81.06	68.53	87.85	47.45	91.84	33.61	79.92	72.37	85.88	52.99
ODIN (Liang et al., 2018)	94.65	26.35	81.06	68.53	87.86	47.44	91.85	33.62	79.93	72.38	85.89	53
Mahalanobis (Lee et al., 2018)	85.9	47.64	77.56	58.08	81.73	52.86	90.88	47.58	79.35	59.63	85.12	53.61
GEM (Morteza & Li, 2022)	88.01	31.73	84.19	56.93	86.1	44.33	93.22	37.28	82.71	57.15	87.97	47.22
KNN (Sun et al., 2022)	96.79	16.16	87.56	42.3	92.18	29.23	93.68	33.56	86.34	48.32	90.01	40.94
ReAct (Sun et al., 2021)	95.76	23.59	82.98	67.38	89.37	45.49	92.09	34.06	80.69	72.26	86.39	53.16
Line (Ahn et al., 2023)	96.99	14.75	88.76	35.11	92.88	24.93	78.94	61.6	66.33	83.45	72.64	72.53
DICE (Sun & Li, 2022)	95.01	21.44	86.55	51.66	90.78	36.55	90.48	34.44	78.44	71.04	84.46	52.74
FDBD (Liu & Qin, 2023)	97.23	13.86	89.25	50.57	93.24	32.22	92.27	36.87	85.14	65.77	88.71	51.32
ours	06.83	14 63	92.38	20 08	94 61	22 31	96 18	18 57	80 08	44 80	92.63	31 73

Table 2. Comparision with different post-hoc OOD detection methods on ImageNet-1k benchmark. We present the AUROC and FPR95 results on ViT, ResNet-50, SwinV2-B, and DeiT. We also provide the average results over the 4 pre-trained models. The results of the four pre-pretrained models are averaged over 6 OOD datasets. The detailed results can be viewed in the appendix. As we can not achieve solid esults with WDiscOOD on ImageNet-1k pre-trained SwinV2-B/16, the average results are from the other 3 pre-trained models

Method	ViT		ResNet-50		Swin-B		DeiT		Avg.	
	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓
MSP (Hendrycks & Gimpel, 2017)	88.89	43.46	73.97	70.98	81.29	63.49	79.8	66.97	80.99	61.23
Energy (Liu et al., 2020)	94.11	27.56	79.53	65.8	80.07	60.35	71.65	72.65	81.34	56.59
ReAct (Sun et al., 2021)	94.07	27.69	83.34	54.81	85.2	53.53	77.16	68.74	84.94	51.19
ODIN (Liang et al., 2018)	93.73	29.68	79.42	65.77	80.68	58.94	76.07	66.43	82.47	55.2
maxLogit (Basart et al., 2022)	93.73	29.68	79.42	65.78	80.94	59.56	76.43	66.38	82.63	55.35
Mahalanobis (Lee et al., 2018)	94.27	27.11	68.36	80.63	87.86	52.07	83.98	73.86	83.62	58.42
KLMatch (Basart et al., 2022)	87.8	44.39	76.09	69.93	81.83	63.85	82.68	67.24	82.1	61.35
KNN (Sun et al., 2022)	92.6	34.38	84.43	57.46	85.08	65.24	82.75	76.24	86.22	58.33
VIM (Wang et al., 2022)	94.23	27.32	83.93	65.92	86.77	51.33	83.91	71.13	87.21	53.93
FDBD (Liu & Qin, 2023)	93.36	31.71	84.47	60.35	86.57	55.75	82.78	71.84	86.79	54.91
Neco (Ammar et al., 2024)	94.38	27.08	75.15	70.27	81.73	54.74	79.2	62.03	82.61	53.53
WDiscOOD (Chen et al., 2023)	94.41	26.35	70	78.71	-	-	83.97	73.83	82.8	59.63
ours	94.27	26.94	87.43	51.77	88.1	51.89	84.97	68.29	88.69	49.72

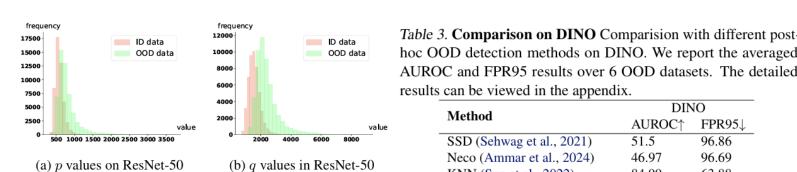


Figure 6. p and q values on ImageNet-1k pre-trained ResNet-50

SSD (Sehwag et al., 2021) Neco (Ammar et al., 2024) KNN (Sun et al., 2022) 91.57

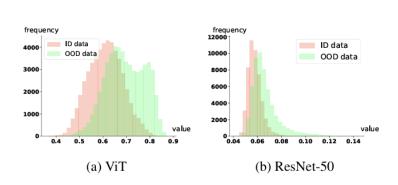


Figure 7. The l_2 norms of features extracted by ImageNet-1k pre-

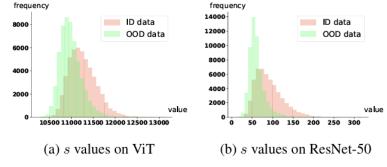


Figure 8. The s values on ImageNet-1k pre-trained ResNet-50 and