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• Self-attention often collapses onto a few tokens, throttling information 
flow. Making the attention matrix doubly-stochastic restores balance, 
but existing Sinkhorn-based solutions are slow and memory-intensive. 
We need a cheaper way to enforce this structure.

Motivation

Contributions
• ESPFormer: Expected Sliced Transport–based, doubly-stochastic 

attention with tunable sparsity; annealing → hard sorting yields exact 
matrices in 𝒪(𝑚𝑁𝑙𝑜𝑔𝑁)

• Outperforms Vanilla Transformer and Sinkformer in both accuracy and 
compute; drops straight into pre-trained or differential-attention models 
with minimal fine-tuning.

Background

ESP Doubly-Stochastic Attention

Computational Efficiency

Numerical Experiments
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• Expected Sliced Transport Plan (given 𝜎 ∈ 𝒫(𝕊𝑑−1))
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is used for differentiability of the Transport 

plans.

➢ Keys and Queries are themselves learned, optimizing Θ is unnecessary. We propose using 
axis-aligned slices by setting Θ = 𝐼𝑚×𝑚.

➢ A temperature annealing schedule enables the transition from soft to hard sorting during 
fine-tuning

Check out our project page!
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• ESPFormer runtime complexity:

Soft Sorting: 𝒪 𝑚𝑁 𝑁 + 𝑑

Hard Sorting: 𝒪 𝑚𝑁𝑙𝑜𝑔𝑁

• Sinkformer runtime for 𝑆 steps: 𝒪 𝑆 +𝑚 𝑁2

Attention weights between keys (red) and queries (green) computed by Sinkhorn's algorithm (top) and Expected Sliced Transport
Plans (bottom). Sinkhorn at iteration S reduces to classic self-attention. Line width indicates attention weight magnitude.

Runtime comparison of ESPFormer and Sinkformer (iterations S) for sequence 
lengths N∈{50,100,500,1000}, averaged over 10 runs. 

Average and standard deviation (over 3 runs) of ESPFormer's classification accuracy (%) vs. baselines on the Cats and Dogs dataset 
under varying data availability. ESPFormer's performance is reported in three modes: initial soft sort, sharp soft sort, and hard sort.

Test accuracy (%) on the ModelNet40 dataset over 4 runs.

ESP integrates slicing into keys/queries, treating each dimension as a learnable slice. Tokens are (soft) sorted per slice, generating dimension-wise 
doubly-stochastic correspondence matrices. Aggregating these matrices yields the final attention matrix.

Test accuracy (%) for Sentiment Analysis on TweetEval. Test accuracy (%) for Sentiment Analysis on IMDb.

Accuracy (%) over three runs across slicer types, slice counts (L), and inverse temperature (τ).

Median BLEU scores over 4 runs on IWSLT14 German-to-English 
for Transformer/DiffTransformer baselines. Results marked * 

indicate use of an alternate attention module.
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