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Introduction — Post-training Quantization

e Post-training Quantization (PTQ)

= With the explosive growth in model complexity, the performance of LLMs has
been advancing.

= The growth in scale has resulted in a corresponding increase in computational
costs. = Compression is required.

= Quantization is a promising solution and an essential step for deploying LLMs
on resource-constrained devices that mainly support fixed-point arithmetic.

= Considering the model complexity and required resources (e.g., training costs
and available dataset), quantization-aware training (QAT) is not practical for
compressing LLMs with billions of parameters.

- Recent studies have focused more on PTQ.



Introduction — PTQ for LLMs

e Backpropagation-free Quantization

= Key idea: iteratively quantize weights and update remaining weights based on
the Hessian to compensate for the quantization error (e.g., GPTQ)

= (+) do NOT rely on gradient-based optimization - fast!
= (-) ignore inter-layer interactions, limiting the low-bit quantization
performance
e Transformation-based Quantization

= Key idea: transform a model into an equivalent quantization-robust form via
smoothing (e.g., SmoothQuant, OmniQuant), rotation (e.g., QuaRot,
SpinQuant), or permutation (e.g., DuQuant)

= (+) can consider inter-layer interactions when optimizing quantization
parameters (scales and zeros), smoothing factors, or rotation matrices

= (-) rely on gradient-based optimization

= (-) rely on the straight-through estimator (STE), which is unstable for low-bit
guantization

= (-) use the naive nearest rounding when assigning quantized weights



Proposed Method (BoA)

e Goal: propose a backpropagation-free weight quantization method that can
consider inter-layer dependencies
e Primary Contributions

= Development of attention-aware Hessians that capture inter-layer
interactions within the attention module

= |ntegration of several relaxation techniques to mitigate the additional
memory and computational overhead incurred by attention-aware Hessians

= Evaluation of BoA through extensive experiments
= Evaluation on various language models (OPT, LLaMA, LLaMA2, LLaMA3)
= Synergy Verification with existing transformation-based methods




Contribution 1 — Attention-aware Hesslans

e Key Idea: use the attention reconstruction error (instead of the layer-wise
reconstruction error) when deriving the Hessian

e Proposed Attention-aware Hessians
= Conventional GPTQ’s Hessian relies solely on the layer input.
— cannot consider the influence of other layers

= Proposed Hessians involve the terms related to other layers (e.g., K};Kh for
qguery) as well as the term related to the layer input.

Table 1. Approximated Hessians in GPTQ and the proposed BOA
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Contribution 1 — Attention-aware Hesslans

e Proposed Attention-aware Hessians

= Conventional GPTQ’s Hessian implies the independence between different
rows.

= Proposed Hessians model the dependency between different rows.

— Quantization error of a certain row can be compensated by updating other
rows.
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(a) Hessians in the conventional GPTQ (left) and the proposed BoA (right)



Contribution 2
— Efficient Inverse Computation

e Additional Computational Overhead of Attention-aware Hessians
= To update weights based on Hessian (after quantizing certain weights), the
inverse Hessian and its Cholesky decomposition are needed.
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= For the proposed attention-aware Hessians, the corresponding computational
complexity is 0(d;d?3), which is significantly larger than that of GPTQ (0(d?)).

" Inourcase, H=H_.,; ® H,,,, where H.,; isa d X d matrix and H,.,,, is
a dy X dp matrix. 2 Hisad,d X djd matrix.

[U];. where U = Chol(H™)"



Contribution 2
— Efficient Inverse Computation

e Efficient Computation of the Inverse Hessian and Its Cholesky Decomposition

= Useful property of Kronecker product
_1 — (Hcol ® Hrow)_1 - col ® Hrow
H™ UcolUcol ® Urow row — (Ucol ® Urow)(Ucol ® Urow)T
= Computing the inverse / Cholesky decomposition for each component Hcol
and H-}, .
—>We do NOT need to compute for the full matrix.

= The corresponding computational complexity is
0(d®) +0(d;) ~ 0(d®)




Contribution 3
— Simultaneous Head-wise Quantization

e Additional Processing Time Incurred by Attention-aware Hessians

= Since the proposed attention-aware Hessians model the row-wise

dependency, we can compensate for the quantization error of a certain row
by updating other rows.

= To do so, the rows must be quantized sequentially (NOT simultaneously).

= e.g., The second row can be quantized after being updated to
compensate for the quantization error of the first row.
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(a) Hessians in the conventional GPTQ (left) and the proposed BoA (right)



Contribution 3
— Simultaneous Head-wise Quantization

e Simultaneous Quantization of Different Attention Heads
= We assume independence between different attention heads.
- Rows belonging to different heads can be quantized simultaneously!
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(a) Hessians in the conventional GPTQ (left) and the proposed BoA (right)
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(b) Quantization procedure in BoA



Experimental Results

e Effectiveness of Simultaneous Quantization of Different Attention Heads

= Without the proposed simultaneous quantization, a significantly long
processing time is required.

= e.g., more than one day for 7B, nearly 6 days for 30B

= By quantizing rows belonging to different heads simultaneously, processing
time can be significantly reduced.

= e.g., more than 40 times reduction for 30B

Table 2. Processing time (hour) of BOA with and without simulta-
neous quantization of different heads

Simultaneous LLaMA Model Size
Quantization 7B 13B 30B
X 27.75 51.66 135.4

@) 0.961 1.553  3.295




Experimental Results

e Comparison with GPTQ,

= The proposed BoA significantly surpasses GPTQ on all models in both
perplexity and zero-shot accuracy performance.

= e.g., 10%p improvement on INT3 quantized LLaMA3.2-1B

= e.g., 20%p improvement on INT3 quantized LLaMA3.2-3B

Table 3. Weight-only quantization performance on LLaMA3 models without transformation

Zero-shol Accuracy (1)

Model Precision  Method  Wiki2PPL () —xr—Rxe——BQ — HS  LAMB OBQA PIQA WG Average

FP16  Baseline 13.15 3814 6326 6951 6078 5438 3460 7437 5951 5682

RTN 634 2696 2559 4153 2605 001 2640 5152 5059  31.08

INT2  GPTQ 538.9 2526 2664 3783 2641 022 2760  S141 4846 3048

LLaMA3.2-1B BOA 312.2 2500 2685 4006 27.17 142 2700 5196 5107 3133
RTN 1.9¢3 2560 2694 5413 2000 058 2700 S218  49.17

INT3 GPTQ 12,0 2406 3948 5385 3107 1385 2780 6007 4933 [ 3744

BOA 26.43 3063 5526 5997 4833 3195 2960 6665 5399 | 47.05

FPI6  Baseline 11.04 46.16 6780 7862 7044 6215 3600 7552 6740 6301

RTN 2 0ed 2679 2652 3789 2593 000 3080 5092 4909  30.99

INT2  GPTQ 98.19 2483 2778 5232 3383 438 2860 5223  SLI14 3439

LLaMA3.2.3B BOA 54.64 2577 3548 5752 3563 1442 2900 5696 5343  38.53
RTN 382.6 2637 2786 4587 3704 144 2600 5392 4846

INT3 GPTQ 46.14 2892 3763 4401 3927 1876 2860 6164 5470 [ 39.19

BOA 13.64 4232 6612 7752 6446  S418 3520 7269 6251 | 59.38




Experimental Results

e Integration with Transformation-based Methods

= For weight-activation quantization, we integrate the proposed BoA with the
existing transform-based method (SpinQuant) to suppress activation outliers.

* The outstanding weight-quantization performance of BoA leads to the state-
of-the-art performance for the weight-activation quantization.

= e.g., 10%p improvement on LLaMA2-7B

= e.g., 12.5%p improvement on LLaMA2-13B

Table 7. Weight-activation quantization performance on transformed LLaMAZ2 models

Zero-shot Accuracy (1)

Midel PrecHa Methad WK PPL () ——Awe 80 AS  LAMB OBQA PIOA WG Avcrage

FP16 Bascline 5473 4500 7466 7792 7504  TO86 4400 7889 6890  67.13
L LaMA2.TB SpinQuant-RTN 2323 2551 3401 6220 3200 1448 2600  S517 5091

- W2A4KV4  SpinQuant-GPTQ 24.29 22095 3674 5988 3283 1381 2620 5664 5130 [ 37.54
BoAf 11.80 2679 4920 6309 4805 3776 3080 6355 5785 [47.14
FP16 Bascline 4,885 4906 7765 8049 7938 734 4580  RO69 7222 6084
LLaMA2. 13B SpinQuant-RTN 11.71 2696 4061 6312 4454 2064 2020 6088 5367 4358
' ' W2A4KV4  SpinQuant-GPTQ 15.54 2355 4120 6217 3576 1650 2080 5952 sis4 [a002

BoA'l 8974 3174 55098 6480 5622 4018 34.40 6844 5027 52.50




Conclusion

e We proposed a novel backpropagation-free weight quantization method that can
consider inter-layer dependencies.

e We developed attention-aware Hessians that capture inter-layer interactions
within the attention module.

e To mitigate the additional computational overhead incurred by the proposed
attention-aware Hessians, we incorporated several techniques.

e From extensive experiments, we validated the efficacy of the proposed BoA.
e Code will be available at
https://github.com/SamsunglLabs/BoA



