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Introduction – Post-training Quantization

 Post-training Quantization (PTQ)

 With the explosive growth in model complexity, the performance of LLMs has 
been advancing.

 The growth in scale has resulted in a corresponding increase in computational 
costs.  Compression is required.

 Quantization is a promising solution and an essential step for deploying LLMs 
on resource-constrained devices that mainly support fixed-point arithmetic.

 Considering the model complexity and required resources (e.g., training costs 
and available dataset), quantization-aware training (QAT) is not practical for 
compressing LLMs with billions of parameters.

 Recent studies have focused more on PTQ.



Introduction – PTQ for LLMs

 Backpropagation-free Quantization

 Key idea: iteratively quantize weights and update remaining weights based on 
the Hessian to compensate for the quantization error (e.g., GPTQ)

 (+) do NOT rely on gradient-based optimization  fast!

 (-) ignore inter-layer interactions, limiting the low-bit quantization 
performance

 Transformation-based Quantization

 Key idea: transform a model into an equivalent quantization-robust form via 
smoothing (e.g., SmoothQuant, OmniQuant), rotation (e.g., QuaRot, 
SpinQuant), or permutation (e.g., DuQuant)

 (+) can consider inter-layer interactions when optimizing quantization 
parameters (scales and zeros), smoothing factors, or rotation matrices

 (-) rely on gradient-based optimization

 (-) rely on the straight-through estimator (STE), which is unstable for low-bit 
quantization

 (-) use the naïve nearest rounding when assigning quantized weights



Proposed Method (BoA)

 Goal: propose a backpropagation-free weight quantization method that can 
consider inter-layer dependencies

 Primary Contributions

 Development of attention-aware Hessians that capture inter-layer 
interactions within the attention module

 Integration of several relaxation techniques to mitigate the additional 
memory and computational overhead incurred by attention-aware Hessians

 Evaluation of BoA through extensive experiments

 Evaluation on various language models (OPT, LLaMA, LLaMA2, LLaMA3)

 Synergy Verification with existing transformation-based methods



Contribution 1 – Attention-aware Hessians

 Key Idea: use the attention reconstruction error (instead of the layer-wise 
reconstruction error) when deriving the Hessian

 Proposed Attention-aware Hessians

 Conventional GPTQ’s Hessian relies solely on the layer input. 

 cannot consider the influence of other layers

 Proposed Hessians involve the terms related to other layers (e.g., 𝐊ℎ
𝑇𝐊ℎ for 

query) as well as the term related to the layer input.



Contribution 1 – Attention-aware Hessians

 Proposed Attention-aware Hessians

 Conventional GPTQ’s Hessian implies the independence between different 
rows.

 Proposed Hessians model the dependency between different rows.

 Quantization error of a certain row can be compensated by updating other

rows.



Contribution 2 
– Efficient Inverse Computation

 Additional Computational Overhead of Attention-aware Hessians

 To update weights based on Hessian (after quantizing certain weights), the 
inverse Hessian and its Cholesky decomposition are needed.

𝛅𝐰 =
𝑄 𝑤𝑖 − 𝑤𝑖

𝐔 𝑖,𝑖
𝐔 𝑖,∶ where 𝐔 = Chol 𝐇−1 𝑇

 For the proposed attention-aware Hessians, the corresponding computational 

complexity is 𝑂(𝑑ℎ
3𝑑3), which is significantly larger than that of GPTQ (𝑂(𝑑3)).

 In our case, 𝐇 = 𝐇𝑐𝑜𝑙 ⊗𝐇𝑟𝑜𝑤 where 𝐇𝑐𝑜𝑙 is a 𝑑 × 𝑑 matrix and 𝐇𝑟𝑜𝑤 is 
a 𝑑ℎ × 𝑑ℎ matrix.  𝐇 is a 𝑑ℎ𝑑 × 𝑑ℎ𝑑 matrix.



Contribution 2 
– Efficient Inverse Computation

 Efficient Computation of the Inverse Hessian and Its Cholesky Decomposition

 Useful property of Kronecker product
𝐇−1 = 𝐇𝑐𝑜𝑙 ⊗𝐇𝑟𝑜𝑤

−1 = 𝐇𝑐𝑜𝑙
−1 ⊗𝐇𝑟𝑜𝑤

−1

𝐇−1 = 𝐔𝑐𝑜𝑙
𝑇 𝐔𝑐𝑜𝑙 ⊗𝐔𝑟𝑜𝑤

𝑇 𝐔𝑟𝑜𝑤 = 𝐔𝑐𝑜𝑙 ⊗𝐔𝑟𝑜𝑤 𝐔𝑐𝑜𝑙 ⊗𝐔𝑟𝑜𝑤
𝑇

 Computing the inverse / Cholesky decomposition for each component 𝐇𝑐𝑜𝑙
−1

and 𝐇𝑟𝑜𝑤
−1 .

We do NOT need to compute for the full matrix.

 The corresponding computational complexity is

𝑂 𝑑3 + 𝑂 𝑑ℎ
3 ≈ 𝑂(𝑑3)



Contribution 3 
– Simultaneous Head-wise Quantization

 Additional Processing Time Incurred by Attention-aware Hessians

 Since the proposed attention-aware Hessians model the row-wise 
dependency, we can compensate for the quantization error of a certain row 
by updating other rows.

 To do so, the rows must be quantized sequentially (NOT simultaneously).

 e.g., The second row can be quantized after being updated to 
compensate for the quantization error of the first row.



Contribution 3 
– Simultaneous Head-wise Quantization

 Simultaneous Quantization of Different Attention Heads

 We assume independence between different attention heads.

 Rows belonging to different heads can be quantized simultaneously!



Experimental Results

 Effectiveness of Simultaneous Quantization of Different Attention Heads

 Without the proposed simultaneous quantization, a significantly long 
processing time is required.

 e.g., more than one day for 7B, nearly 6 days for 30B

 By quantizing rows belonging to different heads simultaneously, processing 
time can be significantly reduced.

 e.g., more than 40 times reduction for 30B



Experimental Results

 Comparison with GPTQ

 The proposed BoA significantly surpasses GPTQ on all models in both 
perplexity and zero-shot accuracy performance.

 e.g., 10%p improvement on INT3 quantized LLaMA3.2-1B

 e.g., 20%p improvement on INT3 quantized LLaMA3.2-3B



Experimental Results

 Integration with Transformation-based Methods

 For weight-activation quantization, we integrate the proposed BoA with the 
existing transform-based method (SpinQuant) to suppress activation outliers.

 The outstanding weight-quantization performance of BoA leads to the state-
of-the-art performance for the weight-activation quantization.

 e.g., 10%p improvement on LLaMA2-7B

 e.g., 12.5%p improvement on LLaMA2-13B



Conclusion

 We proposed a novel backpropagation-free weight quantization method that can 
consider inter-layer dependencies.

 We developed attention-aware Hessians that capture inter-layer interactions 
within the attention module.

 To mitigate the additional computational overhead incurred by the proposed 
attention-aware Hessians, we incorporated several techniques.

 From extensive experiments, we validated the efficacy of the proposed BoA.

 Code will be available at 

https://github.com/SamsungLabs/BoA


