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Motivation

Handwriting, panel data, time series, . . .
=̂ polygonal curves in Rd.

Comparing two curves requires a suitable
dissimilarity measure.

Gold standards: the Fréchet and the
Dynamic time warping distances.
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Traversals

σ

τ

v1

w1

w2

wm′′

v2 vm′

Given curves σ = (v1, . . . , vm′) and
τ = (w1, . . . , wm′′) in Rd.

A traversal T of σ and τ is a sequence of
pairs of indices T = (1, 1), . . . , (m′,m′′), s.t.

(i, j) → (k, l) ∈ {(i+1, j), (i, j+1), (i+1, j+1)}
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k-DTW Definition

Let T be the set of all traversals T of σ and τ . Let the pair (i, j) ∈ T attain the
l-th largest distance s(T )

l = ∥vi − wj∥ in T s.t. s(T )
1 ≥ s

(T )
2 ≥ . . . ≥ s

(T )

|T | . For

any l > |T | let s(T )
l = 0.

Given k ∈ N, the k-DTW distance of σ and τ is defined as

dk-DTW(σ, τ) = min
T∈T

∑k

l=1
s
(T )
l .

k-DTW generalizes both: discrete Fréchet and DTW distances.
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Comparison to Standard Distances

Given curves σ = (v1, . . . , vm′) and τ = (w1, . . . , wm′′). Let m = max{m′,m′′}.

Distance → Discrete Fréchet Dynamic Time Warping The new k-DTW

Triangle inequality Yes Factor m Factor k ≪ m

Robustness Bad Good Good k ≫ 1

Time to compute Θ̃(m2) Θ̃(m2) Ω̃(m2), ??, O(m4)

. . . ε-approximate Θ̃(m2) Θ̃(m2) Θ̃(m2)

Think of 1 ≪ k ≪ m, e.g., k ∈ Θ(logm).
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k-DTW Algorithms

Theorem: Exact algorithm

Given curves σ and τ , |σ| = m′ and
|τ | = m′′, and a parameter k. We can
compute dk-DTW(σ, τ) in time
O(m′m′′z), where z is the number of
distinct distances between vertices in σ
and τ .

Problem:
z can be as large as m′m′′ ⇒
the running time is O(m4) in the worst
case.

Lemma: k-approximation
Given curves σ, τ , and a parameter k.
Then ddF (σ, τ) is a k-approximation for
dk-DTW(σ, τ). It holds that ddF (σ, τ) ≤
dk-DTW(σ, τ) ≤ k · ddF (σ, τ).

Theorem: (1 + ε)-approximation

Given curves σ and τ , |σ| = m′ and
|τ | = m′′, and a parameter k. We can
compute a (1 + ε)-approximation for
k-DTW for any 0 < ε ≤ 1 in time

O

(
m′m′′ log(k/ε)

ε

)
= Õ(m2).
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Improved Learning Theory via k-DTW

Problem: Learning the median of a distribution D over curves of complexity m
supported in the Euclidean ball in Rd.

cost(D, ψ) :=
∫
σ

d(σ, ψ)P[σ] dσ

The excess risk of ψP on P ∼Dn: E := cost(D, ψP )−minψ cost(D, ψ) can be
bounded by Rademacher or Gaussian complexities [Bartlett and Mendelson, 2002].

The Rademacher and Gaussian complexities for learning the median curve of
complexity m are bounded above by

Õ

(√
mk2 ·min{d, k2}

n

)

under k-DTW and below by

Ω

(√
m2

n

)

under DTW. This implies a separation when k ∈ o(
√
m/d) or k ∈ o(m1/4).
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Talk To Us

Please visit us during Poster Session 3 @ ICML 2025

Wednesday, July 16, 2025: 11:00a.m.-1:30p.m. PDT
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