A Closer Look at Multimodal Representation Collapse

Abhra Chaudhuri

Anjan Dutta ²

Tu Bui ¹

Serban Georgescu

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

Modality Collapse

Modality Collapse

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

Predictive

Noisy

 Components along the subspace of other neurons (rank bottleneck) induce polysemanticity.

 Components along the subspace of other neurons (rank bottleneck) induce polysemanticity.

$$p(\mathbf{w}_p) \ge m(m-1) \frac{(\dim f_{min})^2}{\left(\sum_{i=1}^m \dim f_i\right)^2}$$

Probability of cross-modal polysemantic **collisions** increase with the number of modalities

$$p(\mathbf{w}_p) \ge m(m-1) \frac{(\dim f_{\min})^2}{\left(\sum_{i=1}^m \dim f_i\right)^2}$$

- Components along the subspace of other neurons (rank bottleneck) induce polysemanticity.
- Increasing proportion of noisy features in a neuron leads to collapse of the modality, the predictive features of which it is supposed to encode.

Probability of cross-modal polysemantic **collisions** increase with the number of modalities

- Components along the subspace of other neurons (rank bottleneck) induce polysemanticity.
- Increasing proportion of noisy features in a neuron leads to collapse of the modality, the

Entangled vs Disentangled Polysemanticity

Entangled vs Disentangled Polysemanticity

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

 Fusion head neuron corresponding to the student has fewer components along the other modalities.

$$\left\| \mathbf{w} - \sum_{x \in X} \nabla \varphi_W(x) \nabla \varphi_W(x)^T \right\| \le \gamma(\mathbf{w})^{-1/n}$$

Before

$$\left\| \mathbf{w} - \sum_{x \in X} \nabla \varphi_W(x) \nabla \varphi_W(x)^T \right\| \leq \gamma(\mathbf{w})^{-1/n}$$
 Before
$$\left\| \lim_{d(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j) \to \epsilon} \left\| \mathbf{w} - \sum_{\mathbf{x} \in X} \nabla \varphi_W(\mathbf{x}) \nabla \varphi_W(\mathbf{x})^T \right\| \leq \kappa^{-1/n} \right\|$$

- Fusion head neuron corresponding to the student has fewer components along the other modalities.
- The student can function independently in absence of the teacher.

The Distillation Denoising Conjecture

• Knowledge distillation allows the representation of the noisecomponents of the teacher modalities as a transformed version of the student noise:

$$m_t \hat{\eta} = \phi_t(m_s \hat{\eta})$$

 This eliminates the need for encoding noisy features from every modality in the neurons encoding the student modality.

Putting Things Together

Freeing up Rank Bottlenecks via Basis Reallocation

(a) Cross-Modal Interference due to Rank Bottleneck

(b) Rank Bottleneck Free-up via Basis Reallocation

Putting Things Together

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

• Identify lower-dimensional latent properties.

- Identify lower-dimensional latent properties.
- Reconstruct back to the input representation.

- Identify lower-dimensional latent properties.
- Reconstruct back to the input representation.
- Ensure semantic consistency of latent properties.

- Identify lower-dimensional latent properties.
- Reconstruct back to the input representation.
- Ensure semantic consistency of latent properties.
 - Being able to reconstruct the input from the latent while minimizing the task loss in the latent space implies that:
 - 1. The latent encodes the causal factors.
 - The reconstruction head implements the causal mechanisms.

Explicit Basis Reallocation

- Identify lower-dimensional latent properties.
- Reconstruct back to the input representation.
- Ensure semantic consistency of latent properties.
- Semantics-preserving mechanism invariance through modality discriminator.
 - The modality discriminator is trained until the respective task validation accuracies start dropping.

Tying Fusion Head to Factors and Mechanisms

- The fusion head is trained on the representations obtained from the inverse mechanisms applied to the causal factors.
- This decouples the fusion head from the modalities and ties it to the recovered causal factors and mechanisms.

Similarity-Based Ordering of Causal Factors

Similarity-Based Ordering of Causal Factors

 When modalities go missing, check the rank list and substitute with the modality of the closest rank.

- Modality 1
 Modality 2
 Modality 3
- 4. Modality 4

Substitution with the Closest Factor

Modality 4

 When modalities go missing, check the rank list and substitute with the modality of the closest rank.

- Modality 1
- 2. Modality 2
- 3. Modality 3
- 4. Modality 4

Related Literature:

Ahuja et al., Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning, ICLR 2023. Gulrajani and Hashimoto, Identifiability Conditions for Domain Adaptation, ICML 2022.

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

Experiments – Cross-Modal Entanglements

Experiments – Rank and Representation Similarity

Experiments - Convergence

Experiments – Denoising

Experiments – Comparison with SOTA

Method	Mortality		Readmission	
	AUC-ROC	AUC-PRC	AUC-ROC	AUC-PRC
Grape (NeurIPS '20)	0.8837	0.4584	0.7085	0.4551
+ <u>KD</u>	<u>0.9011</u>	<u>0.4620</u>	0.7231	<u>0.4610</u>
+ EBR	0.9102	0.4799	0.7488	0.4691
M3Care (SIGKDD '22)	0.8896	0.4603	0.7067	0.4532
+ <u>KD</u>	0.8950	0.4700	0.7080	0.4562
+ EBR	0.8987	0.4850	0.7296	0.4832
MUSE (ICLR'24)	0.9201	0.4883	0.7351	0.4985
+ <u>KD</u>	0.9350	0.4993	0.7402	0.5066
+ EBR	0.9380	0.5001	0.7597	0.5138

Method	Mortality		Readmission	
	AUC-ROC	AUC-PRC	AUC-ROC	AUC-PRC
CM-AE (ICML '11)	0.7873 ± 0.40	0.3620 ± 0.22	0.6007 ± 0.31	0.3355 ± 0.25
SMIL (AAAI '21)	0.7981 ± 0.11	0.3536 ± 0.12	0.6155 ± 0.09	0.3279 ± 0.15
MT (CVPR '22)	0.8176 ± 0.10	0.3467 ± 0.06	0.6278 ± 0.09	0.2959 ± 0.05
Grape (NeurIPS '20)	0.7657 ± 0.16	0.3733 ± 0.09	0.6335 ± 0.07	0.3120 ± 0.11
M3Care (SIGKDD '22)	0.8265 ± 0.09	0.3830 ± 0.07	0.6020 ± 0.09	0.3870 ± 0.05
ShaSpec (CVPR '23)	0.8100 ± 0.13	0.3630 ± 0.09	0.6216 ± 0.10	0.3549 ± 0.08
MUSE (ICLR'24)	0.8236 ± 0.09	$0.39.87 \pm 0.05$	0.6781 ± 0.05	0.4185 ± 0.07
EBR (Ours)	0.8533 ± 0.09	0.4277 ± 0.02	0.7030 ± 0.05	0.4290 ± 0.02

Vanilla Multimodal Learning

Average across multiple missingness rates (random elimination of modalities during inference)

Outline

- Motivation
- Understanding Modality Collapse
- The Effect of Knowledge Distillation
- Explicit Basis Reallocation
- Experiments
- Conclusion and Open Problems

Conclusions

• Modality collapse is the result of cross-modal polysemantic interference between predictive features of one modality and noisy features from another.

Conclusions

• Modality collapse is the result of cross-modal polysemantic interference between predictive features of one modality and noisy features from another.

• It is a consequence of the **low-rank simplicity bias** in neural networks.

Conclusions

- Modality collapse is the result of cross-modal polysemantic interference between predictive features of one modality and noisy features from another.
- It is a consequence of the low-rank simplicity bias in neural networks.
- It can thus be **prevented by freeing up such bottlenecks** through implicit or explicit **basis reallocation**.

Open Problems

- Verification of feature-wise separability in disentangled polysemantic neurons.
- Effect of unequal label information across features.
- The **Distillation Denoising Conjecture**.
- Geometry of the loss landscape under basis reallocation.

A Closer Look at Multimodal Representation Collapse

Get in touch:

Abhra Chaudhuri abhra.chaudhuri@fujitsu.com

Project Page

https://abhrac.github.io/mmcollapse/