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Cross-Modal Collisions due to Polysemanticity
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Cross-Modal Collisions due to Polysemanticity
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Cross-Modal Collisions due to Polysemanticity

 Components along the
W subspace of other neurons
l (rank bottleneck) induce
polysemanticity.
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Cross-Modal Collisions due to Polysemanticity

 Components along the
subspace of other neurons
l (rank bottleneck) induce
polysemanticity.

W1 1) W3 Wy Wy

im min 2
p(wp) > m(m — 1)— ot i)

m 2
Modality 1 Modality 2 Modality 3 Modality 4 Z dim f;
i=1

Probability of cross-modal polysemantic collisions
™ Predictive M Noisy increase with the number of modalities
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Cross-Modal Collisions due to Polysemanticity

« Components along the
w1 W2 W3 Wy W2 subspace of other neurons
l (rank bottleneck) induce
polysemanticity.

* Increasing proportion of noisy
features in a neuron leads to

_____ collapse of the modality, the
predictive features of which it

d- min 2 .
(dim foin) is supposed to encode.

p(wy) > m(m —1)— .
Modality 1 Modality 3 Modality 4 (Z dim fl)
i=1

Probability of cross-modal polysemantic collisions
™ Predictive M Noisy increase with the number of modalities
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Cross-Modal Collisions due to Polysemanticity

zeX
Modality 1 Modality 3 Modality 4

Polysemantic Weight Degree of

.. . subspace matrix olysemanticit
W Predictive M Noisy P poly y

16



Cross-Modal Collisions due to Polysemanticity

w w w w
! ? ’ * Gets tighter with increasing

polysemanticity
A

T zeX T
Modality 1 Modality 3 Modality 4 l l
Polysemantic Weight Degree of
subspace matrix polysemanticity

M Predictive M Noisy
17



Entangled vs Disentangled Polysemanticity

Entangled
Polysemanticity

Predictive Feature
>

\ ) (Modality. 1)

Interpolation regime

The vertical axes correspond to the value of the input feature.

K >
Noisy Feature
(Modality 2)

Loss Trajectory under
Interference
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Entangled vs Disentangled Polysemanticity

Entangled
Polysemanticity

> Predictive Feature Noisy Feature
(Modality. 1) (Modality 2)

{

Switching Threshold
Interpolation regime 1

A

>

Disentangled
Polysemanticity

>

Range of Polysemantic Neuron Activation Patterns / Feature-wise Contribution

The vertical axes correspond to the value of the input feature.

A

Loss Trajectory under
Interference

Gap due to Modality
Collapse

Marginal Loss Across Features
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* The Effect of Knowledge Distillation
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Distillation Frees Up Rank Bottlenecks
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Distillation Frees Up Rank Bottlenecks
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Distillation Frees Up Rank Bottlenecks
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Distillation Frees Up Rank Bottlenecks
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Distillation Frees Up Rank Bottlenecks

 The student can function
independently in absence
of the teacher.

Audio Spectrogram

Visual Sources: Image — MNIST, Audio Spectrogram — Wikipedia
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The Distillation Denoising Conjecture

I Predictive M Noisy

* Knowledge distillation allows the
w1 W2 W3 Wy representation of the noise-
' components of the teacher
modalities as a transformed
version of the student noise:

mf] = ¢ (msh)

e This eliminates the need for
encoding noisy features from
every modality in the neurons

Modalityl ~ Modality2  Modality 3 Modality 4 encoding the student modality.

m.7): Teacher noise; m,1j: Student noise; ¢¢: Transformation function learned via distillation
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Putting Things Together

Freeing up Rank Bottlenecks via Basis Reallocation

Modality 1 (rank = 1)
Modality 1 (rank = 1)

< >
Joint basis . _ Joint basis
(effective rank =1 + €) Mgy 2 s = 2 (effective rank = 3)

Modality 2 (rank = 2)

Pre-fusion Fusion Pre-fusion Fusion

(a) Cross-Modal Interference due to Rank Bottleneck (b) Rank Bottleneck Free-up via Basis Reallocation
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Putting Things Together

Optimization pathway of
* neuron in cross-modal
entanglement

T Loss

Sub-optimal solution
under rank starvation

Denoising pathway
under rank starvation

Denoising pathway
post freeing up of rank
bottlenecks

==== (Broken) Loss Increase

me==(Cont.) Loss Decrease

. Joint Encoding Step

. Denoising Step
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* Explicit Basis Reallocation
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Explicit Basis Reallocation

: * Identify lower-dimensional latent
Modality 1 MLP .
s properties.

Modality 2 )
MLP
Heads
Modality 3 MLP
Heads
Modality 4
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Explicit Basis Reallocation

Modality 1 MLP

Heads
: e Reconstruct back to the input
: representation.
a P
Modality 2 :
MLP

Modality 3 MLP

Modality 4
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Explicit Basis Reallocation

Modality 1 MLP

Heads \

MLP

* Ensure semantic consistency of latent
properties.

Modality 2

Heads
Modality 3 MLP
Heads
a [I- z L(ZtaSRJY)
Modality 4
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Explicit Basis Reallocation

Modality 1 MLP

Heads \

* Ensure semantic consistency of latent

Modality 2 - properties.
Heads * Being able to reconstruct the input from
: the latent while minimizing the task loss
: in the latent space implies that:
ﬂ 1. The latent encodes the causal
factors.
Modality 3 MLP 2. The reconstruction head
Heads implements the causal
: mechanisms.
a [I- ZL(ZtasIUY)
Modality 4

Related Literature: Parascandolo et al., Learning Independent Causal Mechanisms, ICML 2018.
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Explicit Basis Reallocation

Modality 1 MLP
Heads \
a I D Modality
Discriminator
Modality 2 Lo
Heads e Semantics-preserving mechanism invariance
: through modality discriminator.
a *  The modality discriminator is trained
: until the respective task validation
Modality 3 MLP accuracies start dropping.
Heads

a [I- z L(ztasky)

Modality 4 ] ) ] ) o
Related Literature: Arjovsky et al., Invariant Risk Minimization, 2020.
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Tying Fusion Head to Factors and Mechanisms

Modality 1 HMLz * The fusion head is trained on the
eaas

representations obtained from the
inverse mechanisms applied to the

g | ® Fusion causal factors.

Modality 2 : e This decouples the fusion head from

MLP the modalities and ties it to the

Heads

recovered causal factors and
: mechanisms.
Modality 3 MLP
Heads

Modality 4
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Similarity-Based Ordering of Causal Factors

Modality 1 MLP
Heads H H H H

Modality 2 : Ranking according to a reference modality
MLP
Heads
1. Modality 1
: 2. Modality 2
G [l 3. Modality 3
: 4. Modality 4
Modality 3 MLP
Head
Modality 4
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Similarity-Based Ordering of Causal Factors

Modality 1 MLP *  When modalities go missing, check
the rank list and substitute with the
modality of the closest rank.

a [l ® Fusion
Modality 2 1. Modality 1
odall

Y MLP 2. Modality 2
Heads 3. Modality 3
4. Modality 4

Modality 3 MLP

Heads

Modality 4

40



Substitution with the Closest Factor

Modality 1 MLP *  When modalities go missing, check

d
fea ,S the rank list and substitute with the
: modality of the closest rank.
a [l ® Fusion
Modality 2 1. Modality 1
oy MLP 2. Modality 2
Hea_ds 3. Modality 3
4. Modality 4 »
Modality 3 MLP E

Heads :
Related Literature:
Modality 4 Ahuja et al., Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning, ICLR 2023.

Gulrajani and Hashimoto, Identifiability Conditions for Domain Adaptation, ICML 2022.
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* Experiments
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Experiments — Cross-Modal Entanglements
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Experiments — Rank and Representation Similarity

(a) Multi-Modal Rank (KD)
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(b) Representation Similarity (KD)
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(c) Multi-Modal Rank (EBR)
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(d) Representation Similarity (EBR)
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Experiments - Convergence

Semantic Loss
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Experiments — Denoising
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Experiments — Comparison with SOTA

Method Mortality Readmission Method Mortality Readmission
AUC-ROC AUC-PRC AUC-ROC AUC-PRC AUC-ROC AUC-PRC AUC-ROC  AUC-PRC

Grape (NeurIPS *20) 0.8837 0.4584 0.7085 0.4551 CM-AE (ICML ’11) 0.7873 +0.40 03620022 0.6007 +0.31 0.3355+0.25
+ KD 0.9011 0.4620 0.7231 0.4610 SMIL (AAAI °21) 0.7981 +0.11 03536+0.12 0.6155+0.09 0.3279+0.15
+ EBR , 0.9102 0.4799 0.7488 0.4691 MT (CVPR °22) 0.8176 +0.10 0.3467 +0.06 0.6278 +0.09 0.2959 + 0.05
M3Care (SIGKDD "22)  0.8896 0.4603 0.7067 0.4532 Grape (NeurIPS *20)  0.7657 +0.16 0.3733+£0.09 0.6335+0.07 0.3120%0.11
+ %R % % % % M3Care (SIGKDD °22) 0.8265+0.09 0.3830+0.07 0.6020 +0.09 0.3870 + 0.05
M’[’JSE (ICLR"24) 09901 04883 09351 04085 ShaSpec (CVPR '23) 0.8100+0.13  0.3630+0.09 0.6216+0.10 0.3549 +0.08
KD 09350 04993 07402 05060 MUSE (ICLR’24) 0.8236+0.09 0.39.87 +0.05 0.6781 +0.05 0.4185 +0.07
+ EBR 0.9380 0.5001 0.7597 0.5138 EBR (Ours) 0.8533+0.09 0.4277 £0.02  0.7030 = 0.05  0.4290 + 0.02
Vanilla Multimodal Learning Average across multiple missingness rates (random elimination

of modalities during inference)
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Outline

* Conclusion and Open Problems
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Conclusions

* Modality collapse is the result of cross-modal polysemantic interference
between predictive features of one modality and noisy features from another.
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Conclusions

* |tis a consequence of the low-rank simplicity bias in neural networks.
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Conclusions

* |t can thus be prevented by freeing up such bottlenecks through implicit or
explicit basis reallocation.
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Open Problems

* Verification of feature-wise separability in disentangled polysemantic neurons.

» Effect of unequal label information across features.

* The Distillation Denoising Conjecture.

 Geometry of the loss landscape under basis reallocation.
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A Closer Look at Multimodal Representation Collapse

Project Page

Get in touch: OO

Abhra Chaudhuri
abhra.chaudhuri@fujitsu.com ‘f

https://abhrac.github.io/mmcollapse/
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